Paper waste sludge enhanced eco-efficient polyurethane foam composites: Physical-mechanical properties and microstructure

2016 ◽  
Vol 39 (6) ◽  
pp. 1852-1860 ◽  
Author(s):  
Agnė Kairytė ◽  
Mikelis Kirpluks ◽  
Aiga Ivdre ◽  
Ugis Cabulis ◽  
Sigitas Vėjelis ◽  
...  
2017 ◽  
Vol 9 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Agnė KAIRYTĖ ◽  
Aiga IVDRE ◽  
Saulius VAITKUS

Paper waste sludge (PWS) is the main and the greatest by-product in paper production process, and its elimination as well as destruction is a primary environmental problem. This research explores the feasibility of such wastes to be used in polyurethane foam composites. It is well known that using water as a sole blowing agent has major drawbacks such as long demould time, shrinkage, high diffusion rate of carbon dioxide and etc.; therefore, the bio-based propylene glycol (RPG) is used in order to solve such problems. The addition of 20 parts by weight (pbw) of RPG eliminates the primary shrinkage of the foam composites when PWS is used in the amount varying from 5% to 20%, and improves the dimensional stability at 70 oC and 90% relative humidity conditions. The addition of titanate coupling agent modified PWS particles increases the compressive strength of the final composites from ̴ 26% to ̴ 53%, from ̴ 17% to ̴ 31% and from ̴ 3% to ̴ 23% for, respectively, 10 pbw, 15 pbw and 20 pbw RPG extended foam composites.


2019 ◽  
Author(s):  
Chem Int

Recycling is a crucial area of research in green polymer chemistry. Various developments in recycling are driven by Environmental concerns, interest in sustainability and desire to decrease the dependence on non-renewable petroleum based materials. Polyurethane foams [PUF] are widely used due to their light weight and superior heat insulation as well as good mechanical properties. As per survey carried Polyurethane Foam Association, 12 metric tonnes of polyurethane foam are discharged during manufacturing and/or processing and hence recycling of PUF is necessary for better economics and ecological reasons. In present study, rejects of PUF is subjected to reaction with a diethylene amine in presence of sodium hydroxide [NaOH] as catalyst, as a result depolymerised product containing hydroxyl and amine groups is obtained. Conventional and Microwave reaction for depolymerizing polyurethane foam have been carried, and best results are obtained by Microwave reaction. Further depolymerised product with hydroxyl and amine functionalities are reacted with bis (2-hydroxyethyl terephthalate) [BHET] obtained by recycling polyethylene terephthalate [PET] and sebacic acid, with stannous oxalate [FASCAT 2100 series] as catalyst to obtain Polyester amides. These Polyester amides having hydroxyl and amino groups in excess are cured with isocyanates-hexamethylene diisocyanate biuret [HDI biuret] and isophorone diisocyanate [IPDI] for coating applications. The coated films are characterized using physical, mechanical and chemical tests, which shows comparable physical, mechanical properties but alkali resistance is poor.


2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


2008 ◽  
Vol 44 (5) ◽  
pp. 515-522 ◽  
Author(s):  
A. K. Bledzki ◽  
J. Zicans ◽  
R. Merijs Meri ◽  
D. Kardasz

Sign in / Sign up

Export Citation Format

Share Document