Ion crosslinked poly(acrylic acid‐ co ‐acrylamide)/poly(vinyl alcohol)/Cloisite 15 A nanocomposite hydrogels as potential wound dressing films: Effect of clay content on water absorption kinetic and mechanical properties

2018 ◽  
Vol 40 (5) ◽  
pp. 1762-1773 ◽  
Author(s):  
Ali Olad ◽  
Morad Eslamzadeh ◽  
Abdolreza Mirmohseni
2020 ◽  
Vol 35 (3) ◽  
pp. 203-215
Author(s):  
Mehmet Emin Diken ◽  
Berna Koçer Kizilduman ◽  
Begümhan Yilmaz Kardaş ◽  
Enes Emre Doğan ◽  
Mehmet Doğan ◽  
...  

The nanocomposite hydrogels were prepared by dispersing of the nanopomegranate seed particles into poly(vinyl alcohol)/poly(acrylic acid) blend matrix in an aqueous medium by the solvent casting method. These hydrogels were characterized using scanning electron microscopy, Fourier transform infrared spectra, differential scanning calorimetry, and optical contact angle instruments. The nanopomegranate seed, blend, and hydrogel nanocomposites were tested for microbial activity. In addition, cytocompatibilities of these blend and hydrogel nanocomposites/composites were tested on human lymphocyte with in vitro MTS cell viability assays. Fourier transform infrared spectra revealed that esterification reaction took place among functional groups in the structure of poly(vinyl alcohol) and poly(acrylic acid). The hydrophilic properties of all hydrogels decreased with increasing nanopomegranate seed content. The mean diameters of the nanopomegranate seed particles were about 88 nm. Nanopomegranate seed particles demonstrated antibacterial properties against gram-positive bacteria, Staphylococcus aureus, and gram-negative bacteria, Escherichia coli. The lymphocyte viabilities increased after addition of nanopomegranate seeds into the polymer blend. The swelling behavior of blend and hydrogels was dependent on the cross-linking density created by the reaction between poly(vinyl alcohol)/poly(acrylic acid) blend and nanopomegranate seed. Scanning electron microscopy images were highly consistent with Fourier transform infrared spectra, differential scanning calorimetry, and antibacterial activity results.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


Sign in / Sign up

Export Citation Format

Share Document