Thermal characterization of organically modified montmorillonite and short carbon fibers reinforced glycol‐modified polyethylene terephthalate nanocomposite filaments

2021 ◽  
Author(s):  
Vinyas Mahesh ◽  
Athul S. Joseph ◽  
Vishwas Mahesh ◽  
Dineshkumar Harursampath
2001 ◽  
Vol 367-368 ◽  
pp. 339-350 ◽  
Author(s):  
Wei Xie ◽  
Zongming Gao ◽  
Kunlei Liu ◽  
Wei-Ping Pan ◽  
Richard Vaia ◽  
...  

2006 ◽  
Vol 312 ◽  
pp. 205-210 ◽  
Author(s):  
V. Pettarin ◽  
Victor Jayme Roget Rodriguez Pita ◽  
Francisco Rolando Valenzuela-Díaz ◽  
S. Moschiar ◽  
L. Fasce ◽  
...  

In this paper, we report the preparation of polyethylene composites with organically modified montmorillonite. Three different Na+-montmorillonites were modified in order to obtain organoclays and two grades of high-density polyethylene were used as composite matrices. All composites were prepared by melt blending, and their physical and mechanical properties were thoroughly characterized. The extent of clay platelet exfoliation in the composites was confirmed by X-ray diffraction (XRD). Mechanical properties under static and impact conditions were evaluated to assess the influence of the reinforcement on the properties of polyethylene.


2004 ◽  
Vol 75 (2) ◽  
pp. 671-676 ◽  
Author(s):  
V.L. P. Soares ◽  
R. S. V. Nascimento ◽  
V. J. Menezes ◽  
L. Batista

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2996 ◽  
Author(s):  
Lenka Pazourková ◽  
Magda Reli ◽  
Marianna Hundáková ◽  
Erich Pazdziora ◽  
Daniela Predoi ◽  
...  

Novel biomedical composites, based on organically modified vermiculite and montmorillonite with deposited Ca-deficient hydroxyapatite (CDH), were prepared. The monoionic sodium forms of vermiculite and montmorillonite were intercalated with chlorhexidine diacetate (CA). The surfaces of organoclays were used for the precipitation of Ca-deficient hydroxyapatite. The composites with Ca-deficient hydroxyapatite showed very good antibacterial effects, similar to the antimicrobial activity of pure organoclay samples. Better antibacterial activity was shown in the organically modified montmorillonite sample with Ca-deficient hydroxyapatite compared with the vermiculite composite, but, in the case of Staphylococcus aureus, both composites showed the same minimum inhibitory concentration (MIC) value. The antimicrobial effect of composites against bacteria and fungi increased with the time of exposure. The structural characterization of all the prepared materials, performed using X-ray diffraction and FT infrared spectroscopy analysis, detected no changes in the original clay or CDH during the intercalation or precipitation process, therefore we expect the strength of the compounds to be in the original power.


2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Jana Hrachová ◽  
Ivan Chodák ◽  
Peter Komadel

AbstractParent Ca-montmorillonite (Jelšový Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture of samples. The XRD patterns show that, upon intercalation, the basal spacing of montmorillonite is expanded and corresponds to the pseudotrimolecular arrangement of organic cations in the interlayers. The IR spectra of organically modified montmorillonite show C-H stretching and bending bands of both CH3 and CH2 groups in the 3000–2800 cm−1 and 1500–1400 cm−1 region, respectively. Modification of montmorillonite by organic cations decreased the hydrophilicity of their mineral surface and adsorbed water evaporated at lower temperatures. The SEM photographs reveal a tendency towards lump formation and agglomeration of the ODTMA-montmorillonite particles. The modification introducing organic moiety lead to a substantial decrease in the surface area of both montmorillonites; however, it remained remarkably high, being at the level typical for silica. Completely characterized fillers were used to prepare rubber compositions with enhanced physical properties, as described in Hrachová et al. (2008).


Sign in / Sign up

Export Citation Format

Share Document