Short‐term creep properties and creep model of wood‐plastic composites

2021 ◽  
Author(s):  
Longlong Zhao ◽  
Yang Wei ◽  
Guo Wei Zhang ◽  
Fei Xi
2015 ◽  
Vol 622 ◽  
pp. 204-211 ◽  
Author(s):  
S.S. Wang ◽  
L. Chang ◽  
L. Wang ◽  
T. Wang ◽  
Y.D. Wu ◽  
...  

2019 ◽  
Vol 33 (9) ◽  
pp. 1248-1268 ◽  
Author(s):  
Murtada Abass A Alrubaie ◽  
Roberto A Lopez-Anido ◽  
Douglas J Gardner ◽  
Mehdi Tajvidi ◽  
Yousoo Han

The hygrothermal effect on the short-term creep behavior of extruded thermally modified wood fiber–high-strength styrenic copolymer plastic composites (wood–plastic composites (WPCs)) was investigated on specimens preconditioned for 1 month under water immersion (distilled water (DW) and saltwater (SW)). These specimens were then tested in the same conditions for short-term creep and creep-recovery response using a submersible clamp. The short-term creep tests of WPC specimens (that are immersed in water as a function of different temperatures) have not yet been reported in previous studies. The objective of this study was to determine whether the hygrothermal creep response of WPC material evaluated through water immersion differs from the creep response published in the literature for other environmental exposure conditions. The experiments included measuring 30 min of creep and 30 min of creep recovery on the specimens immersed in SW and DW at two different levels of flexural stresses (9% and 14% of the flexural strength) and three temperature values (25, 35, and 45°C). The average creep strain recovery (%) of the specimens was higher for the specimens immersed in SW during testing than the control specimens. The WPC material is considered to have a potential use in structural applications in environments where the temperature is below 45°C because of the following factors: the low deformation under the short-term sustained loading, the decrease in the deformation rate with respect to the increase in load duration, maintaining the modulus of elasticity over a range of temperatures from 25°C to 45°C under sustained load, and the ability to recover more than 69% of the average creep strain under water immersion when the loading source is removed. The creep strain fractional increment (CSFI) of the WPC in this study under all conditions was 13% which is 86% lower than the CSFI of the WPCs reported in previous studies.


2015 ◽  
Vol 4 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Verônica Mara Cortez Alves de Oliveira ◽  
Mariane Capellari Leite da Silva ◽  
Cátia Gisele Pinto ◽  
Paulo Atsushi Suzuki ◽  
João Paulo Barros Machado ◽  
...  

2017 ◽  
Vol 20 (suppl 2) ◽  
pp. 2-9 ◽  
Author(s):  
Adriano Gonçalves dos Reis ◽  
Danieli Aparecida Pereira Reis ◽  
Antônio Jorge Abdalla ◽  
Antônio Augusto Couto ◽  
Jorge Otubo

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 39-40
Author(s):  
Kendi Tjardes ◽  
Katy Lippolis

Abstract One hundred four Angus calves were ranked by gender, BW, age, and dam parity, and assigned to 1 of 4 pre-weaning treatments: 1) nose flaps for 7-d prior to weaning (NF), 2) traditional weaning (TRAD), 3) traditional weaning and creep feed for 3-wk prior to weaning (TRADC), or 4) nose flaps for 7-d prior to weaning and creep feed for 3-wk prior to weaning (NFC). Cow-calf pairs were housed in dry lot pens on d -28. From d -21 to 0, calves in creep treatments were provided free choice access to creep feed. Nose flaps were placed on d -7, and calves were weaned on d 0. Calves were vaccinated and dewormed on d -21 and 0. There was no difference (P ≥ 0.97) in calf BW on d -28 or -21. During the 7-d period that nose flaps were placed, NFC calves had greater (P ≤ 0.0001) ADG than NF and TRAD calves, and tended to have greater (P ≤ 0.10) ADG than TRADC calves. At weaning on d 0, TRADC and NFC calves tended to have greater BW (P = 0.07) and had greater overall change in BW (P < 0.0001) during the pre-weaning period than TRAD and NF calves. Additionally, there was a greater (P ≤ 0.001) increase in BW of NFC and TRADC cows during the pre-weaning period compared to NF and TRAD cows. From d -21 to 0 there was no differences (P > 0.41) in plasma concentrations for Bovine Viral Diarrhea Virus (BVD). By d 14, the TRADC calves had the greatest plasma concentrations for BVD (P < 0.04). Therefore, providing short-term creep feed prior to placing nose flaps can improve pre-weaning calf and cow performance compared to traditional and nose flap weaning without creep feed supplementation, however, did not improve response to vaccination.


2021 ◽  
Vol 149 ◽  
pp. 106562
Author(s):  
Yidong Gan ◽  
Matthieu Vandamme ◽  
Yu Chen ◽  
Erik Schlangen ◽  
Klaas van Breugel ◽  
...  

2006 ◽  
Vol 519-521 ◽  
pp. 1041-1046 ◽  
Author(s):  
Brian Wilshire ◽  
H. Burt ◽  
N.P. Lavery

The standard power law approaches widely used to describe creep and creep fracture behavior have not led to theories capable of predicting long-term data. Similarly, traditional parametric methods for property rationalization also have limited predictive capabilities. In contrast, quantifying the shapes of short-term creep curves using the q methodology introduces several physically-meaningful procedures for creep data rationalization and prediction, which allow straightforward estimation of the 100,000 hour stress rupture values for the aluminum alloy, 2124.


2012 ◽  
Vol 73 ◽  
pp. 144-152 ◽  
Author(s):  
Shengzhi Li ◽  
Zumrat Eliniyaz ◽  
Lanting Zhang ◽  
Feng Sun ◽  
Yinzhong Shen ◽  
...  

2018 ◽  
Vol 25 (3) ◽  
pp. 713-722 ◽  
Author(s):  
Seen Chan Kim ◽  
Jae-Hyeok Shim ◽  
Woo-Sang Jung ◽  
Yoon Suk Choi

Sign in / Sign up

Export Citation Format

Share Document