EXTRAPOLATION OF SHORT TERM CREEP DATA INTO LONG TERM RUPTURE TIME PREDICTIONS VIA CAVITY NUCLEATION MEASUREMENTS

Author(s):  
Kostas Davanas
2006 ◽  
Vol 519-521 ◽  
pp. 1041-1046 ◽  
Author(s):  
Brian Wilshire ◽  
H. Burt ◽  
N.P. Lavery

The standard power law approaches widely used to describe creep and creep fracture behavior have not led to theories capable of predicting long-term data. Similarly, traditional parametric methods for property rationalization also have limited predictive capabilities. In contrast, quantifying the shapes of short-term creep curves using the q methodology introduces several physically-meaningful procedures for creep data rationalization and prediction, which allow straightforward estimation of the 100,000 hour stress rupture values for the aluminum alloy, 2124.


2018 ◽  
Vol 25 (3) ◽  
pp. 713-722 ◽  
Author(s):  
Seen Chan Kim ◽  
Jae-Hyeok Shim ◽  
Woo-Sang Jung ◽  
Yoon Suk Choi

Author(s):  
Hideo Hiraguchi

Abstract Recently the Discrete Cosine Transform[1], [2], [3] which is a modified Fourier Transform has begun to be used to express coefficients of creep equations using the power law or the exponential law such as Bailey-Norton law[4], [5] and θ Projection[6], [7], [8], [9], [10]. In addition, the Discrete Cosine Transform has begun to be used to express a creep equation itself. We have already found that the Discrete Cosine Transform can express the temperature and stress dependence property of the coefficients of the creep equations at the same time by the two-dimensional Discrete Cosine Transform using 8 × 8 discrete signals[11]. Furthermore, we have already found that the Discrete Cosine Transform can fit measured creep strain values very well from the primary creep region to the tertiary creep region using 8 discrete signals and it can estimate creep strain values between the measured points by interpolation very well[12]. However it has not been known if the Discrete Cosine Transform can predict the long term creep curve by using the short term creep data yet. Therefore, as a next stage, we tried to estimate the long term creep curve from the short term creep data of gas turbine materials by extrapolation using the Discrete Cosine Transform. As a result, we were able to obtain a useful numerical analysis method by utilizing the Discrete Cosine Transform Coefficients and others as a new extrapolation method. It is found that this new numerical method would be able to predict the configuration of 150,000-hour creep curve by using 500-hour to 13,000-hour short term creep data.


Author(s):  
Muneeb Ejaz ◽  
Norhaida Ab Razak ◽  
Andrew Morris ◽  
Scott Lockyer ◽  
Catrin M. Davies

P91 steels are widely used in high temperature components for power generation. Creep data is often generated through accelerated short term creep tests, for practical reasons, via increasing stress or temperature though this may alter the creep behaviour. Through normalising the creep test stress by tensile strength the Wilshire models reduce the batch to batch scatter in the creep data and enable the prediction of long term creep data from relatively short term test results. In this work it is shown that the Wilshire models fitted to uniaxial creep rupture data can be used to predict failure in both as cast and service exposed multiaxial tests. This is provided that the equivalent stress is the rupture controlling stress, as is the case for the P91 tests examined, and the tensile strength is measured as part of the test programme.


Author(s):  
Kouichi Maruyama ◽  
Kyosuke Yoshimi

Long term creep rupture life is usually evaluated from short term data by a time-temperature parameter (TTP) method. The apparent activation energy Q for rupture life of steels sometimes changes from a high value of short term creep to a low value of long term creep. However, the conventional TTP analyses ignore the decrease in Q, resulting in the overestimation of rupture life recognized recently in advanced high Cr ferritic steels. A multi region analysis of creep rupture data is applied to a creep data set of Gr.122 steel; in the analysis a creep rupture data is divided into several data sets so that Q value is unique in each divided data set. The multi region analysis provides the best fit to the data and the lowest value of 105 h creep rupture strength among the three ways of data analysis examined. The conventional single region analysis cannot correctly represent the data points and predicts the highest strength. A half of 0.2% proof stress could not be an appropriate boundary for dividing data to be used in the multi region analysis. In the 2001 Edition of ASME Code an F average concept has been proposed as a substitution for the safety factor of 2/3 for average rupture stress. The allowable stress of Gr.122 steel may decrease significantly when the F average concept and the multi region analysis are adopted.


2007 ◽  
Vol 561-565 ◽  
pp. 2217-2220 ◽  
Author(s):  
Hassan Ghassemi Armaki ◽  
Kyosuke Yoshimi ◽  
Kouichi Maruyama ◽  
Mitsuru Yoshizawa ◽  
Masaaki Igarashi

The apparent activation energy for rupture life sometimes changes from a high value of short term creep to a low value of long term creep. This change results in overestimation of rupture life recognized recently in advanced high Cr ferritic steels. The present study examined how to detect the decrease of activation energy in 9-12 %Cr steels with tempered martensitic lath microstructure. During aging without stress hardness of the tempered martensite microstructures remains almost constant in short term, whereas it decreases with increasing time after long term exposure. The onset of hardness drop can be a good measure of the decrease of activation energy. Causes of the hardness drop and the decrease of activation energy are discussed.


2008 ◽  
Vol 385-387 ◽  
pp. 693-696 ◽  
Author(s):  
Woo Gon Kim ◽  
Song Nan Yin ◽  
Ik Hee Jung ◽  
Yong Wan Kim

This study aimed to model the long-term creep curves above 105 hours by implementing a nonlinear least square fitting (NLSF) of the Kachanov-Rabotnov (K-R) model. For this purpose, the short-term creep curves obtained from a series of creep tests at 950oC were used. In the NLSF of their full creep curves, the K-R model represented a poor match to the experimental curves, but the modified K-R one revealed a good agreement to them. The Monkman-Grant (M-G) strain represented the behavior of a stress dependency, but the 􀁏 parameter was constant with a stress independency. The 􀁏 value in the modified K-R model was 2.78. Long-term creep curves above 105 hours from short-term creep data were modeled by the modified K-R model.


2004 ◽  
Vol 19 (3) ◽  
pp. 313-319 ◽  
Author(s):  
S. D. Lim ◽  
J. M. Rhee ◽  
C. Nah ◽  
S.-H. Lee ◽  
M.-Y. Lyu

Sign in / Sign up

Export Citation Format

Share Document