Online pattern-based part quality monitoring of the injection molding process

1996 ◽  
Vol 36 (11) ◽  
pp. 1477-1488 ◽  
Author(s):  
Suzanne L. B. Woll ◽  
Douglas J. Cooper ◽  
Blair V. Souder
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Jian-Yu Chen ◽  
Chien-Chou Tseng ◽  
Ming-Shyan Huang

Quality control is a crucial issue in the injection molding process with target of obtaining a high yield rate and reducing production cost. Consequently, effective methods for monitoring the injection conditions (e.g., pressure, velocity, and temperature) in real-time and adjusting these conditions adaptively as required to ensure a consistent part quality are essential. This study proposes a quality index based on the clamping force increment during the injection cycle, as determined by four strain gauges attached to the tie bars of the injection molding machine. Also, various quality indexes for online quality monitoring and prediction purposes based on the pressure, viscosity, and energy features extracted from the pressure profiles obtained at the load cell, nozzle, and molding cavity, respectively, are compared. The feasibility of the proposed quality indexes is investigated experimentally for various settings of the barrel temperature, back pressure, and rotational speed of the plasticizing screw. It is shown that all of the quality indexes are correlated with the injection-molded quality and hence provide a feasible basis for the realization of an on-line quality monitoring and control system. Particularly, the tie-bar elongation quality index requires no modification or invasion of the injection molding system or cavity and hence provides a particularly attractive solution for monitoring and controlling the part quality.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3297
Author(s):  
Jinsu Gim ◽  
Byungohk Rhee

The cavity pressure profile representing the effective molding condition in a cavity is closely related to part quality. Analysis of the effect of the cavity pressure profile on quality requires prior knowledge and understanding of the injection-molding process and polymer materials. In this work, an analysis methodology to examine the effect of the cavity pressure profile on part quality is proposed. The methodology uses the interpretation of a neural network as a metamodel representing the relationship between the cavity pressure profile and the part weight as a quality index. The process state points (PSPs) extracted from the cavity pressure profile were used as the input features of the model. The overall impact of the features on the part weight and the contribution of them on a specific sample clarify the influence of the cavity pressure profile on the part weight. The effect of the process parameters on the part weight and the PSPs supported the validity of the methodology. The influential features and impacts analyzed using this methodology can be employed to set the target points and bounds of the monitoring window, and the contribution of each feature can be used to optimize the injection-molding process.


2000 ◽  
Author(s):  
James T. Wang

Abstract In the co-injection molding process, two (or more) different polymers are injected into the cavity simultaneously or sequentially. Different properties of these two polymers and their distribution in the cavity greatly affect the applications of this molding process. The skin layer can use special polymers to provide good appearance and texture, strength, chemical resistance, EMI shielding and other functions. The core layer can use recycled or inexpensive materials. Together these can improve part quality and lower the cost. However, due to the dynamic interaction of two polymers in the manufacturing process and their difference in properties, process control becomes more complicated and process design becomes a challenge. The rules used for the traditional injection molding process design may not always be useful for co-injection molding any more. An integrated CAE software has been developed to simulate the co-injection molding process. In this study, the capability and usefulness of the CAE tool will be shown. The control of polymer distribution will be discussed. The effects of polymer properties and their distribution on part quality will also be studied.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Eunyoung Chang ◽  
Seungwon Shin ◽  
Haseung Chung

Injection molding process is a widely used manufacturing technique to massively produce the components of mobile device with various sizes and complicated geometries. However, the final part quality, especially dimension or geometry, referring to the original design specifications is not often acceptable due to various reasons. This study aims at developing the numerical model to predict the final part quality and subsequently identifying the critical reasons for existing problems. moldflow and abaqus software have been simultaneously used to simulate the injection molding process and thermal deformation arising after ejection step from the mold. In order to validate the model, the deformation predicted by the developed model was compared with experimental results, and both results showed good agreement. We also carried out design of experiment (DOE) to investigate the effect of various processing parameters that affect the final deformation of injection molded product. The developed model and information derived from DOE are expected to provide useful resources to the initial stage of mobile device design.


Author(s):  
Supasit Rodkwan ◽  
Rungtham Panyawipart ◽  
Chana Raksiri ◽  
Kunnayut Eiamsa-ard

With a recent growth in the demand of the rubber products globally, the latest technology is adopted to improve the design and manufacturing of those rubber products in term of part quality and production lead time and cost. The cold runner system is one of the technologies which can assist in unfilling part problem and raw material saving. Nevertheless, with the lack of numerical tool with an ability to predict the behavior of rubber during the injection molding process, designers still need to use their experience and trial-and-error method to design the mold and the cold runner system. Therefore, in this research, the use of CAE and a cold runner system is applied to the design and manufacturing of rubber injection molding process with a gasket mold made of SBR as a case study. The empirical and simulated results agree well and the use of raw material in the actual system is decreased by 12% shot weight which can lead to the reduced cost of products. Finally, it can be seen that the use of CAE can assist the mold designers and manufacturers to get better understanding of flow pattern and behavior of rubber during the injection process so the better part quality can be obtained.


2013 ◽  
Vol 133 (4) ◽  
pp. 105-111
Author(s):  
Chisato Yoshimura ◽  
Hiroyuki Hosokawa ◽  
Koji Shimojima ◽  
Fumihiro Itoigawa

Sign in / Sign up

Export Citation Format

Share Document