Relationship between cell morphology and impact strength of microcellular foamed high-density polyethylene/polypropylene blends

2004 ◽  
Vol 44 (8) ◽  
pp. 1551-1560 ◽  
Author(s):  
Pornchai Rachtanapun ◽  
Susan E. M. Selke ◽  
Laurent M. Matuana
2017 ◽  
Vol 727 ◽  
pp. 447-449 ◽  
Author(s):  
Jun Dai ◽  
Hua Yan ◽  
Jian Jian Yang ◽  
Jun Jun Guo

To evaluate the aging behavior of high density polyethylene (HDPE) under an artificial accelerated environment, principal component analysis (PCA) was used to establish a non-dimensional expression Z from a data set of multiple degradation parameters of HDPE. In this study, HDPE samples were exposed to the accelerated thermal oxidative environment for different time intervals up to 64 days. The results showed that the combined evaluating parameter Z was characterized by three-stage changes. The combined evaluating parameter Z increased quickly in the first 16 days of exposure and then leveled off. After 40 days, it began to increase again. Among the 10 degradation parameters, branching degree, carbonyl index and hydroxyl index are strongly associated. The tensile modulus is highly correlated with the impact strength. The tensile strength, tensile modulus and impact strength are negatively correlated with the crystallinity.


RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6791-6797
Author(s):  
Yueqing Ren ◽  
Xiaojie Sun ◽  
Lanlan Chen ◽  
Yafei Li ◽  
Miaomiao Sun ◽  
...  

Crosslinking significantly improves the toughness and impact strength of HDPE and extends its application, especially at low temperature.


2020 ◽  
pp. 096739112093461
Author(s):  
WVWH Wickramaarachchi ◽  
S Walpalage ◽  
SM Egodage

Blending of two or more polymers generates a new material, which is more cost-effective than a newly synthesised material. Blending-type thermoplastic elastomer (TPE) is produced by melt-mixing of a thermoplastic with a rubber. These blends have high demands associated with excellent property combinations of the parent materials. Particulate fillers are used in the rubber and plastic industry for property modification and cost reduction. In this work, six particulate fillers, namely, calcium carbonate, barium sulphate (BaSO4), kaolin, talc, Snobrite clay and dolomite were used to develop natural rubber (NR)/high-density polyethylene (HDPE) TPE blends, and the most suitable filler for roofing application was identified. A series of NR/HDPE 20/80 blends were prepared by varying filler loading from 10 phr to 30 phr at 10 phr intervals using a Plasticorder. Mechanical properties, such as tensile strength, hardness, impact strength and tear strength, and gel content of the blends were investigated. The addition of talc, dolomite and kaolin to NR/HDPE blend showed reduced impact strength, which is the most important property for a roofing application. The other three fillers showed improved impact strength at specific loadings. The blend with 30 phr of BaSO4 was identified as the best blend, as per the overall performance.


Rheology ◽  
1980 ◽  
pp. 459-460
Author(s):  
R. Greco ◽  
G. Ragosta ◽  
E. Martuscelli ◽  
G. Mucciariello

Sign in / Sign up

Export Citation Format

Share Document