scholarly journals A new black bean with resistance to bean rust: Registration of ‘ND Twilight’

Author(s):  
Juan M. Osorno ◽  
Albert J. Vander Wal ◽  
John Posch ◽  
Kristin Simons ◽  
Kenneth F. Grafton ◽  
...  
Keyword(s):  
2009 ◽  
Vol 3 (3) ◽  
pp. 226-230 ◽  
Author(s):  
James D. Kelly ◽  
Gregory V. Varner ◽  
Pat O'Boyle ◽  
Brian Long
Keyword(s):  

Crop Science ◽  
1991 ◽  
Vol 31 (6) ◽  
pp. 1710-1710 ◽  
Author(s):  
J. R. Myers ◽  
R. E. Hayes ◽  
J. J. Kolar
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Vera Breiing ◽  
Jennifer Hillmer ◽  
Christina Schmidt ◽  
Michael Petry ◽  
Brigitte Behrends ◽  
...  

As biorationals, plant oils offer numerous advantages such as being natural products, with low ecotoxicological side effects, and high biodegradability. In particular, drying glyceride plant oils, which are rich in unsaturated fatty acids, might be promising candidates for a more sustainable approach in the discussion about plant protection and the environment. Based on this, we tested the protective and curative efficacy of an oil-in-water-emulsion preparation using drying plant oils (linseed oil, tung oil) and a semi-drying plant oil (rapeseed oil) separately and in different mixtures. Plant oils were tested in greenhouse experiments (in vivo) on green beans (Phaseolus vulgaris L.) against bean rust (Uromyces appendiculatus). We observed that a 2% oil concentration showed no or very low phytotoxic effects on green beans. Both tested drying oils showed a protective control ranging from 53–100% for linseed oil and 32–100% for tung oil. Longer time intervals of 6 days before inoculation (6dbi) were less effective than shorter intervals of 2dbi. Curative efficacies were lower with a maximum of 51% for both oils when applied 4 days past inoculation (4dpi) with the fungus. Furthermore, the results showed no systemic effects. These results underline the potential of drying plant oils as biorationals in sustainable plant protection strategies.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3833
Author(s):  
Fatma M. Elessawy ◽  
Albert Vandenberg ◽  
Anas El-Aneed ◽  
Randy W. Purves

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Craig M. Sandlin ◽  
James R. Steadman ◽  
Carlos M. Araya ◽  
Dermot P. Coyne

Five isolates of the bean rust fungus Uromyces appendiculatus were shown to be specifically virulent on bean genotypes of Andean origin. This specificity was demonstrated by the virulence of five pairs of isolates on a differential set of 30 Phaseolus vulgaris landraces. Each isolate pair was from a different country in the Americas and consisted of one Andean-specific isolate and one nonspecific isolate. Of the differential P. vulgaris landraces, 15 were of Middle American origin and 15 were of Andean origin. The Andean-specific rust isolates were highly virulent on Andean landraces but not on landraces of Middle American origin. Rust isolates with virulence to Middle American landraces were also generally virulent on Andean material; no truly Middle American-specific isolates were found. Random amplified polymorphic DNA (RAPD) analysis of the rust isolates also distinguished the two groups. Four of the Andean-specific rust isolates formed a distinct group compared to four of the nonspecific isolates. Two of the isolates, one from each of the two virulence groups, had intermediate RAPD banding patterns, suggesting that plasmagomy but not karyogamy occurred between isolates of the two groups.


Author(s):  
James D. Kelly ◽  
Halima E. Awale ◽  
Andrew T. Wiersma ◽  
Evan M. Wright
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document