Estimation of monomer reactivity ratios by nonlinear least-squares procedure with consideration of the weight of experimental data

1978 ◽  
Vol 16 (7) ◽  
pp. 1719-1733 ◽  
Author(s):  
Bunichiro Yamada ◽  
Masaki Itahashi ◽  
Takayuki Otsu
2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Gamze Barim ◽  
Mustafa Gokhun Yayla

Methacrylates have high glass transition temperature (Tg) values and high thermal stability. A new methacrylate copolymer, poly(4-acetylphenyl methacrylate-co-ethyl methacrylate) (APMA-co-EMA), was synthesized. The thermal behaviors of copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. They behaved as new single polymers with singleTg’s and the thermal stability of the copolymers increased with increasing 4-acetylphenyl methacrylate (APMA) fraction, leading to the manufacture of copolymers with desiredTgvalues. Structure and composition of copolymers for a wide range of monomer feed ratios were determined by Fourier transform infrared (FT-IR) and1H-nuclear magnetic resonance (1H-NMR) spectroscopic techniques. Copolymerization reactions were continued up to 40% conversions. The monomer reactivity ratios for copolymer system were determined by the Kelen-Tüdös (ra(APMA)=0.81;rb(EMA)=0.61) and extended Kelen-Tüdös (ra=0.77;rb=0.54) methods and a nonlinear least squares (ra=0.74;rb=0.49) method.


1977 ◽  
Vol 55 (21) ◽  
pp. 1829-1834 ◽  
Author(s):  
P. Niay ◽  
P. Bernage ◽  
C. Coquant ◽  
A. Fayt

In this paper, the Dunham potential coefficients are numerically determined by using a nonlinear least squares routine applied directly to the line experimental wave numbers.The results are compared to the ones obtained when using the usual iterative process applied to the H81Br Yi0 and Yi1 equilibrium constants.The al determination new method assumes a theoretical framework (B.O., adiabatic or non-adiabatic) to be valid. One can test this assumption by comparing the experimental data to the calculated ones.


2012 ◽  
Vol 184-185 ◽  
pp. 110-113
Author(s):  
Zhi Peng Yao ◽  
Sheng Shuang Chen

We build the deformation integral model of the actual storage tank and estimate the deflection parameters by using nonlinear least squares based on experimental data. The accurate calibration value of the tank capacity table of the actual storage tank is calculated.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Laszlo Czetany ◽  
Peter Lang

Fluid distributors are widely used in various industrial and ventilation applications. For the appropriate design of such distributors, the discharge coefficient has to be known to predict the energy and fluid distribution performance. Despite the vast amount of experimental data published, no generally applicable equations are available. Therefore, a new equation is presented for sharp-edged circular side outlets, which can be widely used for calculating the discharge coefficient. The equation is developed by regression with nonlinear least squares combined with genetic algorithm on experimental data available in the literature. The equation covers a wider range than the others presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document