Optimal method for preparing sulfonated polyaryletherketones with high ion exchange capacity by acid‐catalyzed crosslinking for proton exchange membrane fuel cells

2021 ◽  
Vol 59 (8) ◽  
pp. 706-720
Author(s):  
Shih‐Wei Lee ◽  
Zelalem Gudeta Abdi ◽  
Jyh‐Chien Chen ◽  
Kuei‐Hsien Chen
Author(s):  
D. Vidhyeswari ◽  
A. Surendhar ◽  
S. Bhuvaneshwari

Abstract The aim of this study is to synthesis SPEEK composite proton exchange membrane with the addition of TiO2 nanofillers for microbial fuel cell application. SPEEK composite membrane with varying weight percentage of TiO2 (2.5, 5, 7.5 and 10%) was prepared to study the effect of TiO2 concentration on membrane performance. Synthesized composite membranes were subjected to various characterization studies such as FT-IR, XRD, Raman spectroscopy; TGA, UTM and SEM. Physico-chemical properties of membrane such as water uptake capacity, ion exchange capacity and thickness were also analyzed. 5% TiO2 – SPEEK composite membrane exhibited the higher water uptake capacity value and Ion exchange capacity value of 31% and 1.71 meq/g respectively. Performance of the MFC system with TiO2 – SPEEK membranes were evaluated and compared with the pristine SPEEK and Nafion membrane. 5% TiO2 – SPEEK membrane produced the higher power density (1.22 W/m2) and voltage (0.635 V) than the other membranes investigated. Efficacy of MFC in wastewater treatment was evaluated based on the chemical oxygen demand (COD), total organic carbon content and turbidity. Biofilm growth over the surface of the electrodes was also analyzed using scanning electron microscopy.


2018 ◽  
Vol 18 (2) ◽  
pp. 313 ◽  
Author(s):  
Muhammad Ridwan Septiawan ◽  
Dian Permana ◽  
Sitti Hadijah Sabarwati ◽  
La Ode Ahmad ◽  
La Ode Ahmad Nur Ramadhan

Chitosan was modified by maleic anhydride, and it was then functionalized using heterogeneous and blending method to obtain the membrane. The results of the reaction between chitosan with maleic anhydride were signed by the new peak appears around 1475 cm-1 which attributed to C=C bending of alkene. The new peak also appears at 1590 cm-1 which attributed to N-H bending of amide. Chitosan-maleic anhydride membranes show microstructure of chitosan membrane with high porous density and rigidity while chitosan-maleic anhydride membranes have clusters. In addition, the thermal tenacity of membranes reached 500 °C. Modified membrane by heterogeneous and blending method have higher water uptake, ion exchange capacity, and proton conductivity than chitosan membrane. Moreover, the blending method is much more effective than the heterogeneous method that can be exhibited from ion exchange capacity and proton conductivity values of 1.08–6.38 meq g-1 and 1x10-3–1x10-2 S cm-1, 0.92–2.27 meq g-1 and 1.53x10-4–3.04x10-3 S cm-1, respectively. The results imply that modification of chitosan membrane with the addition of maleic anhydride using heterogeneous and blending method can be applied to proton exchange membrane.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1871 ◽  
Author(s):  
Ae Kim ◽  
Mohanraj Vinothkannan ◽  
Kyu Lee ◽  
Ji Chu ◽  
Sumg Ryu ◽  
...  

We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) results revealed that we effectively attained phase separation of the SPES membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided a 74.7 mS cm−1 proton conductivity at 90 °C, which is better than other SPES membranes, but slightly lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange membrane fuel cells (PEMFCs) at 60 °C and 80% relative humidity (RH), the PEMFC power density exhibited a similar increment-pattern like proton conductivity pattern.


In this study the cation exchange membranes(CEM) were fabricated using 3 different compositions of sulphonated poly vinyl alcohol (SPVA) and phosphorylated graphene oxide(PGO) in weight ratios by physicalmixing and casting method. Loading of PGO in the SPVA improvedwater uptake property which signifies increase in ion exchange capacity(IEC) and proton conductivity as presence of acidic groups were characterized. These fabricated membranes performances were assessed in microbial fuel cells(MFCs) and characterized using XRD and FTIR for its compositional analysis. Due to proper proton conducting channelsmost suitable CEM (SPVA-PGO-3) revealed higher proton conductivity 9.0 x 10-2 S/cm at 27oC, water uptake 114%, area swelling 54.2% and ion exchange capacity (IEC) 1.92 meq/g. The power density obtained for this composite membrane applied in MFC-3 was observed to be 503.1 mW/m2 while the COD removal results obtained as 80.8 %.


2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Sabit Adanur ◽  
Hai Zheng

Sulfonated polyimide (SPI) based membranes for proton exchange membrane fuel cells (PEMFC) have been synthesized by using a one-step high temperature polymerization method. The membranes were characterized with Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC); water uptake, ion-exchange capacity, proton conductivity and mechanical stability were tested. The results showed that the membranes had good thermal and mechanical stability and exhibited good performance when they were assembled into membrane electrode assemblies (MEAs). Fuel cell testing was performed. The SPI copolymer based MEA was tested under different hydrogen flow rates to compare with the commercially available Nafion® based MEA.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document