Crystallization kinetics and crystallization behavior of syndiotactic polystyrene/clay nanocomposites

2001 ◽  
Vol 39 (17) ◽  
pp. 2097-2107 ◽  
Author(s):  
Chen-Rui Tseng ◽  
Hsin-Yi Lee ◽  
Feng-Chih Chang



Polymer ◽  
2001 ◽  
Vol 42 (25) ◽  
pp. 10063-10070 ◽  
Author(s):  
Chen-Rui Tseng ◽  
Jeng-Yue Wu ◽  
Hsin-Yi Lee ◽  
Feng-Chih Chang


2019 ◽  
Vol 39 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Bingxiao Liu ◽  
Guosheng Hu ◽  
Jingting Zhang ◽  
Zhongqiang Wang

AbstractStudy of the crystallization kinetics is particularly necessary for the analysis and design of processing operations, especially the non-isothermal crystallization behavior, which is due to the fact that most practical processing techniques are carried out under non-isothermal conditions. The non-isothermal crystallization behaviors of polyamide 6 (PA6) and PA6/high-density polyethylene/maleic anhydride/2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (PA6/HDPE/MAH/L-101) composites were investigated by differential scanning calorimetry (DSC). The crystallization kinetics under non-isothermal condition was analyzed by the Jeziorny and Mo equations, and the activation energy was determined by the Kissinger and Takhor methods. The crystal structure and morphology were analyzed by wide-angle X-ray diffraction (WXRD) and polarized optical microscopy (POM). The results indicate that PA6/HDPE/MAH/L-101 has higher crystallization temperature and crystallization rate, which is explained as due to its heterogeneous nuclei.



2018 ◽  
Vol 37 (1) ◽  
pp. 33-37
Author(s):  
Tie-Lei Tian ◽  
Yu-Zhu Zhang ◽  
Hong-wei Xing ◽  
Jie Li ◽  
Zun-Qian Zhang

AbstractThe chemical structure of mineral wool fiber was investigated by using Fourier Transform Infrared Spectroscopy (FTIR). Next, the glass transition temperature and the crystallization temperature of the fibers were studied. Finally, the crystallization kinetics of fiber was studied. The results show that the chemical bond structure of fibers gets more random with the increase of acidity coefficient. The crystallization phases of the fibers are mainly melilites, and also a few anorthites and diopsides. The growth mechanism of the crystals is three dimensional. The fibers with acidity coefficient of 1.2 exhibit the best thermal stability and is hard to crystallize as it has the maximum aviation energy of crystallization kinetics.



Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1067 ◽  
Author(s):  
Yu-Hao Chen ◽  
Palraj Ranganathan ◽  
Chin-Wen Chen ◽  
Yi-Huan Lee ◽  
Syang-Peng Rwei

The crystallization behavior of novel polyamide 6 (PA6) copolyamides with different amounts of bis (2-aminoethyl) adipamide/adipic acid (BAEA/AA) segment was investigated. The wide-angle X-ray diffraction (WAXD) results showed that as the amount of BAEA/AA segment increased to 10 mole%, the crystalline forms of all PA6 copolyamide were transferred from the stable α-form to the unstable γ-form because of the complex polymer structure. According to studies of crystallization kinetics, the Avrami exponent (n) values for all copolyamide samples ranged from 1.43 to 3.67 under isothermal conditions, implying that the crystallization is involved in the two- to three-dimensional growth at a high temperature of isothermal condition. The copolyamides provided a slower crystallization rate and higher crystallization activation energy (ΔEa) than neat PA6. Polyamide containing 10 mole% of BEAE/AA content exhibited a unique crystallization behavior in the coexistence of the α and γ forms. These results deepen our understanding of the relationship between BAEA/AA content, crystal structure, and its crystallization behavior in low-melting PA6, and they make these types of copolyamides useful for their practical application.



2019 ◽  
Vol 951 ◽  
pp. 21-25
Author(s):  
Achmad Chafidz ◽  
Sholeh Ma'mun ◽  
Haryanto ◽  
Wara Dyah Pita Rengga ◽  
Prima A. Handayani ◽  
...  

In this study, PP/clay nanocomposites have been fabricated at different nanoclay loadings, i.e. 0, 5, 10, and 5 wt% for the 1stcycle and 2ndcycle (re-processing). The prepared nanocomposites were then characterized by a Differential Scanning Calorimetry (DSC) to investigate the effects of nanoclay loadings and re-processing on the melting and crystallization of the nanocomposites. The DSC results showed that the melting temperature,Tmwas not significantly affected by the nanoclay loadings and re-processing. In the other hand, the degree of crystallinity,Xcof the nanocomposites was higher than that of neat PP, but only reached a maximum at nanoclay loading of 5 wt% (i.e. 51.2% for NC-5-I and 48.3% for NC-5-II). Thereafter, theXcdecreased at higher nanoclay loadings. There was no significant difference inXcbetween 1stcycle and 2ndcycle. Additionally, in all nanocomposites samples for both cycles, there were two crystallization temperatures, i.e.Tc1andTc2. In the overall crystallization process, theTcof nanocomposites increased by 11-12°C compared to that of neat PP. Whereas, the onset crystallization temperature,Tocalso increased by approx. 13°C. Apparently, there was no significant effect of nanoclay loadings and re-processing on theTcndTocof the nanocomposites.



2015 ◽  
Vol 132 (39) ◽  
pp. n/a-n/a ◽  
Author(s):  
Abdulhakim Masa ◽  
Sougo Iimori ◽  
Ryota Saito ◽  
Hiromu Saito ◽  
Tadamoto Sakai ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document