Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method

1995 ◽  
Vol 33 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Y. Agari ◽  
A. Ueda ◽  
S. Nagai
2003 ◽  
Author(s):  
Bochuan Lin ◽  
Shen Zhu ◽  
Heng Ban ◽  
Chao Li ◽  
Rosalia N. Scripa ◽  
...  

This study further develops the standard laser flash method for the measurement of multiple thermal properties of semiconductor melts. The standard laser flash method is widely used to measure thermal diffusivity of solids. Our modified procedure allows thermal diffusivity, thermal conductivity, and specific heat capacity of molten semiconductor material to be determined simultaneously. The transient heat transfer process in the melt and its quartz container was computationally studied in detail. A fitting procedure based on the numerical result and the least root-mean-square error fitting to the experimental data was used to extract thermal diffusivity, specific heat capacity, and thermal conductivity. The results for tellurium (Te) at 873 K: specific heat capacity 300.2 J/kg K, thermal conductivity 3.50 W/m K, thermal diffusivity 2.04×10−6 m2/s, are in good agreement with data published in the literature. Furthermore, uncertainty analysis showed quantitatively the effect of sample geometry, transient temperature measured, and the energy of the laser pulse on the results.


2006 ◽  
Vol 317-318 ◽  
pp. 509-512
Author(s):  
Byung Koog Jang ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

ZrO2-4mol% Y2O3 coatings on zirconia substrate were deposited by EB-PVD. Influence of the coating thickness on thermal conductivity and thermal diffusivity of coated samples is examined. The fractured surface of the coated samples reveals a columnar microstructure consisting of feather-like structure. We have adopted a laser flash method for thermal diffusivity and specific heat capacity of coated samples. It was found that the thermal conductivity of the coating layers was strongly dependent on coating thickness. The thermal conductivity of coating layers shows increasing tendency with increasing the coating thickness.


1996 ◽  
Vol 17 (1) ◽  
pp. 253-261 ◽  
Author(s):  
Y. Maeda ◽  
H. Sagara ◽  
R. P. Tye ◽  
M. Masuda ◽  
H. Ohta ◽  
...  

2002 ◽  
Vol 42 (5) ◽  
pp. 498-503 ◽  
Author(s):  
Tsuyoshi Nishi ◽  
Hiroyuki Shibata ◽  
Koichi Tsutsumi ◽  
Hiromichi Ohta ◽  
Yoshio Waseda

2010 ◽  
Vol 14 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sunday Etuk ◽  
Louis Akpabio ◽  
Ita Akpan

Thermal conductivity values at the temperature of 301-303K have been measured for Zea mays straw board as well as Zea mays heartwood (cork) board. Comparative study of the thermal conductivity values of the boards reveal that Zea mays heartwood board has a lower thermal conductivity value to that of the straw board. The study also shows that the straw board is denser than the heartwood board. Specific heat capacity value is less in value for the heartwood board than the straw board. These parameters also affect the thermal diffusivity as well as thermal absorptivity values for the two types of boards. The result favours the two boards as thermal insulators for thermal envelop but with heartwood board as a preferred insulation material than the straw board.


2013 ◽  
Vol 8 (3) ◽  
pp. 163-167
Author(s):  
Alibek Agazhanov ◽  
Igor Savchenko ◽  
Dmitriy Samoshkin ◽  
Sergey Stankus ◽  
Olga Dutova

Thermal diffusivity of the ferritic-martensitic steel 16Kh12V2FTaR in the temperature range from 296 to 1274 K has been measured by the laser flash method with the error of 2–4 %. The approximating equations have been obtained, the Curie point of steel and the temperatures of martensitic-austenite phase transitions have been determined


Author(s):  
Siti Shahirah Suhaili ◽  
Md Azree Othuman Mydin ◽  
Hanizam Awang

The addition of mesocarp fibre as a bio-composite material in foamed concrete can be well used in building components to provide energy efficiency in the buildings if the fibre could also offer excellent thermal properties to the foamed concrete. It has practical significance as making it a suitable material for building that can reduce heat gain through the envelope into the building thus improved the internal thermal comfort. Hence, the aim of the present study is to investigate the influence of different volume fractions of mesocarp fibre on thermal properties of foamed concrete. The mesocarp fibre was prepared with 10, 20, 30, 40, 50 and 60% by volume fraction and then incorporated into the 600, 1200 and 1800 kg/m3 density of foamed concrete with constant cement-sand ratio of 1:1.5 and water-cement ratio of 0.45. Hot disk thermal constant analyser was used to attain the thermal conductivity, thermal diffusivity and specific heat capacity of foamed concrete of various volume fractions and densities. From the experimental results, it had shown that addition of mesocarp fibre of 10-40% by volume fraction resulting in low thermal conductivity and specific heat capacity and high the thermal diffusivity of foamed concrete with 600 and 1800 kg/m3 density compared to the control mix while the optimum amount of mesocarp fibre only limit up to 30% by volume fraction for 1200 kg/m3 density compared to control mix. The results demonstrated a very high correlation between thermal conductivity, thermal diffusivity and specific heat capacity which R2 value more than 90%.


Sign in / Sign up

Export Citation Format

Share Document