Simultaneous wide-angle X-ray diffraction and differential scanning calorimetry analysis of the melting and recrystallization behavior of polyethylene and isotactic polypropylene containing cyclopentane units in the main chain

2004 ◽  
Vol 42 (8) ◽  
pp. 1457-1465 ◽  
Author(s):  
Naofumi Naga
2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800
Author(s):  
Prabhakar Gulgunje ◽  
Gajanan Bhat ◽  
Joseph Spruiell

The influence of molecular orientation on the melting behavior of draw-annealed poly(phenylene sulfide) fibers is investigated in the present paper. Tools used to probe the investigation were differential scanning calorimetry, polarized light optical microscopy, wide angle X-ray diffraction, and small angle X-ray diffraction. It is shown that molecular orientation in the crystalline and amorphous regions play a key role in crystal rearrangement during melting. A probable mechanism by which amorphous orientation influences crystal rearrangement is also discussed.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Mengfan Wang ◽  
Weiyu Cao

Simultaneous measurements of wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) were carried out to investigate the phase transition and melting behaviors of poly(butylene adipate) (PBA). Thermal expansion changes along the a and b axes of the β form unit cell are different from each other during the heating process. At the beginning of the β to αH (high-temperature α phase) phase transition, the β phase melts very fast, while the recrystallization of the αH phase is delayed and slowed. With the further increment of the temperature, the melting rate of the β phase slows down, while the recrystallization of the αH phase accelerates. The diffraction peak intensity ratios of the β(020):β(110) and αH(020):αH(110) diffraction peaks during the first heating process have similar value. However, the above value is different from the value of α(020):α(110) during the following melt-crystallization process. This difference comes from the different orientations of the crystal lattices of the α and αH(β) crystals to the substrate plane, which indicates that the αH phase inherits the orientation of the β phase during phase transition and the orientation of αH form crystals is different from the α form crystals that crystallized from the melt.


e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 409-416 ◽  
Author(s):  
Yottha Srithep ◽  
Dutchanee Pholharn

AbstractPoly(l-lactide) (PLLA)/poly(d-lactide) (50/50) with plasticizer contents ranging from 2% to 16% w/w were prepared by melt blending using an internal mixer. Wide-angle X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry results confirmed that complete stereocomplex polylactide crystallites without any homocrystallites were produced. Compared to neat PLLA, the melting temperature of the stereocomplex polylactide and its plasticized samples was approximately 55°C higher. Higher plasticizer contents decreased glass transition temperature of the stereocomplex, which implied higher flexibility and enhanced the crystallization rate. However, the plasticizer in the stereocomplex reduced the thermal stability.


Sign in / Sign up

Export Citation Format

Share Document