Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy

Polymer ◽  
2007 ◽  
Vol 48 (6) ◽  
pp. 1749-1755 ◽  
Author(s):  
Tsuyoshi Furukawa ◽  
Harumi Sato ◽  
Rumi Murakami ◽  
Jianming Zhang ◽  
Isao Noda ◽  
...  
2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800
Author(s):  
Prabhakar Gulgunje ◽  
Gajanan Bhat ◽  
Joseph Spruiell

The influence of molecular orientation on the melting behavior of draw-annealed poly(phenylene sulfide) fibers is investigated in the present paper. Tools used to probe the investigation were differential scanning calorimetry, polarized light optical microscopy, wide angle X-ray diffraction, and small angle X-ray diffraction. It is shown that molecular orientation in the crystalline and amorphous regions play a key role in crystal rearrangement during melting. A probable mechanism by which amorphous orientation influences crystal rearrangement is also discussed.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Mengfan Wang ◽  
Weiyu Cao

Simultaneous measurements of wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) were carried out to investigate the phase transition and melting behaviors of poly(butylene adipate) (PBA). Thermal expansion changes along the a and b axes of the β form unit cell are different from each other during the heating process. At the beginning of the β to αH (high-temperature α phase) phase transition, the β phase melts very fast, while the recrystallization of the αH phase is delayed and slowed. With the further increment of the temperature, the melting rate of the β phase slows down, while the recrystallization of the αH phase accelerates. The diffraction peak intensity ratios of the β(020):β(110) and αH(020):αH(110) diffraction peaks during the first heating process have similar value. However, the above value is different from the value of α(020):α(110) during the following melt-crystallization process. This difference comes from the different orientations of the crystal lattices of the α and αH(β) crystals to the substrate plane, which indicates that the αH phase inherits the orientation of the β phase during phase transition and the orientation of αH form crystals is different from the α form crystals that crystallized from the melt.


e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 409-416 ◽  
Author(s):  
Yottha Srithep ◽  
Dutchanee Pholharn

AbstractPoly(l-lactide) (PLLA)/poly(d-lactide) (50/50) with plasticizer contents ranging from 2% to 16% w/w were prepared by melt blending using an internal mixer. Wide-angle X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry results confirmed that complete stereocomplex polylactide crystallites without any homocrystallites were produced. Compared to neat PLLA, the melting temperature of the stereocomplex polylactide and its plasticized samples was approximately 55°C higher. Higher plasticizer contents decreased glass transition temperature of the stereocomplex, which implied higher flexibility and enhanced the crystallization rate. However, the plasticizer in the stereocomplex reduced the thermal stability.


2016 ◽  
Vol 36 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Mounira Maiza ◽  
Mohamed Tahar Benaniba ◽  
Valérie Massardier-Nageotte

Abstract Triethyl citrate (TEC) and acetyl tributyl citrate (ATBC) were used as plasticizer for poly(lactic acid) (PLA). The treated and plasticized PLA at various concentrations were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and opacity. DSC was used to evaluate the crystallinity and thermal property of all the samples. It was found that the glass transition temperature (Tg) and the melting temperature (Tm) decreased as the amount of citrate esters increased. Additionally, the presence of TEC or ATBC tended to increase the crystallinity of PLA. This result was supported by XRD. DMA of plasticized PLA indicates that a decrease in Tg is obtained with increasing plasticizer content. FTIR spectra indicate that there are some molecular interactions by intermolecular hydrogen bonds between PLA and citrate esters. The effect of the concentration of plasticizer on the opacity of the films was negligible.


2014 ◽  
Vol 775-776 ◽  
pp. 233-237 ◽  
Author(s):  
Dayanne Diniz Souza Morais ◽  
Renata Barbosa ◽  
Keila Machado Medeiros ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Recent advances in biodegradable polymers have attracted a great interest not only in traditional areas such as biomedical and pharmaceutical industry, but also in packaging applications, articles and injected membranes. The aim of this work was to produce bio-nanocomposites poly (lactic acid) - PLA with bentonite clay. The bio-nanocomposites were produced by melt intercalation with incorporation of 1 to 3 wt% of organoclay. The degree of dispersion of clays in the polymer, and consequently the structure of bio-nanocomposites produced was evaluated by X-ray diffraction (XRD), and the thermal properties were studied by differential scanning calorimetry (DSC). XRD results indicated the formation of intercalated structures. It was observed the appearance of crystalline melting double peaks in bio-nanocomposites PLA.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


Sign in / Sign up

Export Citation Format

Share Document