Plasticizer effect on melt blending of polylactide stereocomplex

e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 409-416 ◽  
Author(s):  
Yottha Srithep ◽  
Dutchanee Pholharn

AbstractPoly(l-lactide) (PLLA)/poly(d-lactide) (50/50) with plasticizer contents ranging from 2% to 16% w/w were prepared by melt blending using an internal mixer. Wide-angle X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry results confirmed that complete stereocomplex polylactide crystallites without any homocrystallites were produced. Compared to neat PLLA, the melting temperature of the stereocomplex polylactide and its plasticized samples was approximately 55°C higher. Higher plasticizer contents decreased glass transition temperature of the stereocomplex, which implied higher flexibility and enhanced the crystallization rate. However, the plasticizer in the stereocomplex reduced the thermal stability.

2013 ◽  
Vol 664 ◽  
pp. 538-542 ◽  
Author(s):  
Onusa Saravari ◽  
Phanitnan Srisuwan ◽  
Noppadon Kerddonfag ◽  
Wannee Chinsirikul

In this article, the effect of montmorillonite (MMT) concentration on the nucleation of polypropylene (PP) was investigated. The PP/MMT nanocomposites containing various content of MMT (0.075-3.0 wt%) were prepared by a melt blending process using an internal mixer, followed by compression molding into sheets. The nucleation effect of MMT was characterized by X-ray diffraction (XRD), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) techniques. XRD results indicated that the PP nanocomposites loaded with less than 1.5 wt% of MMT formed an exfoliated structure. DSC results showed that the crystallization temperature (Tc) of PP/MMT nanocomposites were higher than that of neat PP. Tc also increased with increasing MMT content, indicating that MMT was effective in nucleating PP crystal. WAXD patterns revealed that the addition of MMT did not affect the crystal structure of PP. Mechanical property tests showed that the tensile and impact strengths of the PP/MMT nanocomposites were better than those of neat PP when the MMT content was lower than 1.5 wt%.


2017 ◽  
Vol 37 (8) ◽  
pp. 747-755 ◽  
Author(s):  
Zhiyuan Shen ◽  
Faliang Luo ◽  
Jianghua Du ◽  
Xiaomei Lei ◽  
Lijie Ji

Abstract The blends of poly (butylene terephthalate) (PBT) and 4,4′-dihydroxyphenyl (DHP) were prepared by melt blending, and the effects of DHP on the crystallization and melting behaviors of PBT were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). The results showed that crystallization temperature and crystallinity of PBT apparently decreased with the addition of DHP. A remarkably decline in crystallization rate of PBT was achieved, and the blends had higher σe and q values than that of pure PBT as analyzed based on the Avrami equation and Lauritzen-Hoffman equation. The crystal structure of PBT did not change by the addition of DHP, while the spherulite size of PBT decreased.


2018 ◽  
Vol 34 (6) ◽  
pp. 2716-2720
Author(s):  
Onanong Cheerarot ◽  
Yodthong Baimark

The stereocomplex polylactides (scPLAs) of the asymmetric poly(L-lactide)(PLLA)/poly(D-lactide) (PDLA) ratios from 80:20 to 60:40 were prepared via the simple melt blending method using an internal mixer at 200°C. An organo-modified clay, Cloisite® 30B, was used for nanocomposite preparation. The formation of the stereocomplex and nanocomposite structures were confirmed by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). An increase in the PDLA content could enhance the stereocomplex formation. The presence of Cloisite®30B decreased the melting temperature and crystallinity of the blends. This was due to the thinner crystalline size generated and/or more disordered crystals.


1998 ◽  
Vol 23 (0) ◽  
pp. 09-16
Author(s):  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Massao IONASHIRO

Compounds of cinnamic acid with manganese, zinc and lead have been prepared in aqueous solution. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction and complexometry have been used in the characterization as well as in the study of the thermal stability and interpretation concerning the thermal decomposition.


2019 ◽  
pp. 089270571987919
Author(s):  
Volodymyr Krasinskyi ◽  
Ivan Gajdos ◽  
Oleh Suberlyak ◽  
Viktoria Antoniuk ◽  
Tomasz Jachowicz

The structure and thermal characteristics of nanocomposites based on polyvinyl alcohol (PVA) and montmorillonite (MMT) intercalated with polyvinylpyrrolidone were investigated by X-ray diffraction analysis and differential scanning calorimetry. The modification of PVA with intercalated MMT reduces the degree of crystallinity of the resulting nanocomposites but significantly increases their thermal stability. Under ultrasound, the intercalated MMT was completely distributed in a PVA solution and formed a monocrystalline structure. Films based on PVA with modified MMT were cross-linked at 110°C in the presence of 5 wt% acrylic acid and 0.5 wt% Ferrous(II) sulfate as an initiator. The formed films have a homogeneous cross-linked structure.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800
Author(s):  
Prabhakar Gulgunje ◽  
Gajanan Bhat ◽  
Joseph Spruiell

The influence of molecular orientation on the melting behavior of draw-annealed poly(phenylene sulfide) fibers is investigated in the present paper. Tools used to probe the investigation were differential scanning calorimetry, polarized light optical microscopy, wide angle X-ray diffraction, and small angle X-ray diffraction. It is shown that molecular orientation in the crystalline and amorphous regions play a key role in crystal rearrangement during melting. A probable mechanism by which amorphous orientation influences crystal rearrangement is also discussed.


2012 ◽  
Vol 482-484 ◽  
pp. 1898-1903
Author(s):  
Ying Xue Zhou ◽  
Xiao Dong Fan ◽  
Dan Xue

Supramolecular hydrogels were formed through F127, acryloyl chloride modified F127 inclusion complex with α-cyclodextrin, respectively. The structure of modified copolymers and inclusion complex was characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonance (1H-NMR). Hydrogels formed from supramolecular inclusion are imparted channel-type structure investigated by wide angle x-ray diffraction (WAXRD). Differential scanning calorimetry (DSC) and TG experiments showed that thermal stability of hydrogels depend on the nature of axis polymer. The relative model was proposed to elucidate the inclusion complexes and hydrogels formation.


1998 ◽  
Vol 23 (0) ◽  
pp. 91-98 ◽  
Author(s):  
Ana Glauce ZAINA CHIARETTO ◽  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Nedja Suely FERNANDES ◽  
Massao IONASHIRO

Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.


Sign in / Sign up

Export Citation Format

Share Document