Mechanical and electrical properties of the epoxy composites with graphite nanoplatelets and carbon nanotubes

2013 ◽  
Vol 211 (2) ◽  
pp. 336-341 ◽  
Author(s):  
Ludmila Vovchenko ◽  
Oleksandra Lazarenko ◽  
Ludmila Matzui ◽  
Yulia Perets ◽  
Alexander Zhuravkov ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3325
Author(s):  
Paweł Smoleń ◽  
Tomasz Czujko ◽  
Zenon Komorek ◽  
Dominik Grochala ◽  
Anna Rutkowska ◽  
...  

This paper investigates the effect of multiwalled carbon nanotubes on the mechanical and electrical properties of epoxy resins and epoxy composites. The research concerns multiwalled carbon nanotubes obtained by catalytic chemical vapor deposition, subjected to purification processes and covalent functionalization by depositing functional groups on their surfaces. The study included the analysis of the change in DC resistivity, tensile strength, strain, and Young’s modulus with the addition of carbon nanotubes in the range of 0 to 2.5 wt.%. The effect of agents intended to increase the affinity of the nanomaterial to the polymer on the aforementioned properties was also investigated. The addition of functionalized multiwalled carbon nanotubes allowed us to obtain electrically conductive materials. For all materials, the percolation threshold was obtained with 1% addition of multiwalled carbon nanotubes, and filling the polymer with a higher content of carbon nanotubes increased its conductivity. The use of carbon nanotubes as polymer reinforcement allows higher values of tensile strength and a higher strain percentage to be achieved. In contrast, Young’s modulus values did not increase significantly, and higher nanofiller percentages resulted in a drastic decrease in the values of the abovementioned properties.


2021 ◽  
Vol 19 (2) ◽  
pp. 271
Author(s):  
Yu-Ting Zuo ◽  
Hong-Jun Liu

Graphene and carbon nanotubes have a Steiner minimum tree structure, which endows them with extremely good mechanical and electronic properties. A modified Hall-Petch effect is proposed to reveal the enhanced mechanical strength of the SiC/graphene composites, and a fractal approach to its mechanical analysis is given.  Fractal laws for the electrical conductivity of graphene, carbon nanotubes and graphene/SiC composites are suggested using the two-scale fractal theory. The Steiner structure is considered as a cascade of a fractal pattern. The theoretical results show that the two-scale fractal dimensions and the graphene concentration play an important role in enhancing the mechanical and electrical properties of graphene/SiC composites. This paper sheds a bright light on a new era of the graphene-based materials.


Synlett ◽  
2021 ◽  
Author(s):  
Chao Lu ◽  
Xi Chen

Flexible strain sensors with superior flexibility and high sensitivity are critical to artificial intelligence. And it is favorable to develop highly sensitive strain sensors with simple and cost effective method. Here, we have prepared carbon nanotubes enhanced thermal polyurethane nanocomposites with good mechanical and electrical properties for fabrication of highly sensitive strain sensors. The nanomaterials have been prepared through simple but effective solvent evaporation method, and the cheap polyurethane has been utilized as main raw materials. Only a small quantity of carbon nanotubes with mass content of 5% has been doped into polyurethane matrix with purpose of enhancing mechanical and electrical properties of the nanocomposites. As a result, the flexible nanocomposite films present highly sensitive resistance response under external strain stimulus. The strain sensors based on these flexible composite films deliver excellent sensitivity and conformality under mechanical conditions, and detect finger movements precisely under different bending angles.


2013 ◽  
Vol 86 (3) ◽  
pp. 423-448 ◽  
Author(s):  
Liliane Bokobza

ABSTRACT The reinforcement of elastomeric materials by addition of mineral fillers represents one of the most important aspects in the field of rubber science and technology. The improvement in mechanical properties arises from hydrodynamic effects depending mainly on the amount of filler and the aspect ratio of the particles and also on polymer–filler interactions depending on the surface characteristics of the filler particles and the chemical nature of the polymer. The past few years have seen the extensive use of nanometer-scale particles of different morphologies on account of the small size of the filler and the corresponding increase in the surface area that allow a considerable increase in mechanical properties even at very low filler loading. Among these nanoparticles, spherical particles (such as silica or titania) generated in situ by the sol-gel process and carbon nanotubes are typical examples of materials used as a nanosize reinforcing additive. Specific features of filled elastomers are discussed through the existing literature and through results of the author's research based on poly(dimethylsiloxane) filled with spherical silica or titania particles and on styrene–butadiene rubber filled with multiwall carbon nanotubes. The reinforcing ability of each type of filler is discussed in terms of morphology, state of dispersion (investigated by transmission electron microscopy, atomic force microscopy, small-angle neutron scattering), and mechanical and electrical properties. In addition, the use of molecular spectroscopies provides valuable information on the polymer–filler interface. Spherical silica and titania spherical particles are shown to exhibit two distinct morphologies, two different polymer–filler interfaces that influence the mechanical properties of the resulting materials. The superiority of carbon nanotubes over carbon black for mechanical reinforcement and electrical conduction is mainly attributed to their large aspect ratio rather than to strong polymer–filler interactions. The use of hybrid fillers (carbon nanotubes in addition to carbon black or silica, for example) has been shown to give promising results by promoting an enhancement of mechanical and electrical properties with regard to each single filler.


Sign in / Sign up

Export Citation Format

Share Document