scholarly journals Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3325
Author(s):  
Paweł Smoleń ◽  
Tomasz Czujko ◽  
Zenon Komorek ◽  
Dominik Grochala ◽  
Anna Rutkowska ◽  
...  

This paper investigates the effect of multiwalled carbon nanotubes on the mechanical and electrical properties of epoxy resins and epoxy composites. The research concerns multiwalled carbon nanotubes obtained by catalytic chemical vapor deposition, subjected to purification processes and covalent functionalization by depositing functional groups on their surfaces. The study included the analysis of the change in DC resistivity, tensile strength, strain, and Young’s modulus with the addition of carbon nanotubes in the range of 0 to 2.5 wt.%. The effect of agents intended to increase the affinity of the nanomaterial to the polymer on the aforementioned properties was also investigated. The addition of functionalized multiwalled carbon nanotubes allowed us to obtain electrically conductive materials. For all materials, the percolation threshold was obtained with 1% addition of multiwalled carbon nanotubes, and filling the polymer with a higher content of carbon nanotubes increased its conductivity. The use of carbon nanotubes as polymer reinforcement allows higher values of tensile strength and a higher strain percentage to be achieved. In contrast, Young’s modulus values did not increase significantly, and higher nanofiller percentages resulted in a drastic decrease in the values of the abovementioned properties.

2009 ◽  
Vol 44 (13) ◽  
pp. 3476-3482 ◽  
Author(s):  
Laurence Vast ◽  
Luc Carpentier ◽  
Fabrice Lallemand ◽  
Jean-François Colomer ◽  
Gustaaf Van Tendeloo ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ankita Pritam Praharaj ◽  
Dibakar Behera ◽  
Tapan Kumar Bastia ◽  
Arun Kumar Rout

This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nanocomposites consisting of Vinylester resin/epoxy (VER/EP) blend (40 : 60 w/w) reinforced with amine functionalized multiwalled carbon nanotubes (f-MWCNTs). Five different sets of VER/EP nanocomposites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nanocomposites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nanocomposites with nanofiller (f-MWCNTs) addition compared to the virgin blend (0 wt. nanofiller loading). The properties are best observed in case of 5 wt.% nanofiller loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nanofiller particles. Thus the above nanocomposites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.


Sign in / Sign up

Export Citation Format

Share Document