Bone cells in cultures on nanocarbon-based materials for potential bone tissue engineering: A review (Phys. Status Solidi A 12∕2014)

2014 ◽  
Vol 211 (12) ◽  
pp. n/a-n/a
Author(s):  
Lucie Bacakova ◽  
Ivana Kopova ◽  
Lubica Stankova ◽  
Jana Liskova ◽  
Jiri Vacik ◽  
...  
2007 ◽  
Vol 5 (25) ◽  
pp. 899-907 ◽  
Author(s):  
M.A Wood ◽  
Y Yang ◽  
E Baas ◽  
D.O Meredith ◽  
R.G Richards ◽  
...  

A number of bone tissue engineering strategies use porous three-dimensional scaffolds in combination with bioreactor regimes. The ability to understand cell behaviour relative to strain profile will allow for the effects of mechanical conditioning in bone tissue engineering to be realized and optimized. We have designed a model system to investigate the effects of strain profile on bone cell behaviour. This simplified model has been designed with a view to providing insight into the types of strain distribution occurring across a single pore of a scaffold subjected to perfusion–compression conditioning. Local strains were calculated at the surface of the pore model using finite-element analysis. Scanning electron microscopy was used in secondary electron mode to identify cell morphology within the pore relative to local strains, while backscattered electron detection in combination with X-ray microanalysis was used to identify calcium deposition. Morphology was altered according to the level of strain experienced by bone cells, where cells subjected to compressive strains (up to 0.61%) appeared extremely rounded while those experiencing zero and tensile strain (up to 0.81%) were well spread. Osteoid mineralization was similarly shown to be dose dependent with respect to substrate strain within the pore model, with the highest level of calcium deposition identified in the intermediate zones of tension/compression.


2022 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Giorgia Borciani ◽  
Giorgia Montalbano ◽  
Nicola Baldini ◽  
Chiara Vitale-Brovarone ◽  
Gabriela Ciapetti

New biomaterials and scaffolds for bone tissue engineering (BTE) applications require to be tested in a bone microenvironment reliable model. On this assumption, the in vitro laboratory protocols with bone cells represent worthy experimental systems improving our knowledge about bone homeostasis, reducing the costs of experimentation. To this day, several models of the bone microenvironment are reported in the literature, but few delineate a protocol for testing new biomaterials using bone cells. Herein we propose a clear protocol to set up an indirect co-culture system of human-derived osteoblasts and osteoclast precursors, providing well-defined criteria such as the cell seeding density, cell:cell ratio, the culture medium, and the proofs of differentiation. The material to be tested may be easily introduced in the system and the cell response analyzed. The physical separation of osteoblasts and osteoclasts allows distinguishing the effects of the material onto the two cell types and to evaluate the correlation between material and cell behavior, cell morphology, and adhesion. The whole protocol requires about 4 to 6 weeks with an intermediate level of expertise. The system is an in vitro model of the bone remodeling system useful in testing innovative materials for bone regeneration, and potentially exploitable in different application fields. The use of human primary cells represents a close replica of the bone cell cooperation in vivo and may be employed as a feasible system to test materials and scaffolds for bone substitution and regeneration.


2014 ◽  
Vol 211 (12) ◽  
pp. 2688-2702 ◽  
Author(s):  
Lucie Bacakova ◽  
Ivana Kopova ◽  
Lubica Stankova ◽  
Jana Liskova ◽  
Jiri Vacik ◽  
...  

2020 ◽  
Vol 18 (5) ◽  
pp. 541-550
Author(s):  
Wei Cao ◽  
Marco N. Helder ◽  
Nathalie Bravenboer ◽  
Gang Wu ◽  
Jianfeng Jin ◽  
...  

Abstract Purpose of Review Bone regeneration plays an important role in contemporary clinical treatment. Bone tissue engineering should result in successful bone regeneration to restore congenital or acquired bone defects in the human skeleton. Osteocytes are thought to have a governing role in bone remodeling by regulating osteoclast and osteoblast activity, and thus bone loss and formation. In this review, we address the so far largely unknown role osteocytes may play in bone tissue regeneration. Recent Findings Osteocytes release biochemical signaling molecules involved in bone remodeling such as prostaglandins, nitric oxide, Wnts, and insulin-like growth factor-1 (IGF-1). Treatment of mesenchymal stem cells in bone tissue engineering with prostaglandins (e.g., PGE2, PGI2, PGF2α), nitric oxide, IGF-1, or Wnts (e.g., Wnt3a) improves osteogenesis. Summary This review provides an overview of the functions of osteocytes in bone tissue, their interaction with other bone cells, and their role in bone remodeling. We postulate that osteocytes may have a pivotal role in bone regeneration as well, and consequently that the bone regeneration process may be improved effectively and rapidly if osteocytes are optimally used and stimulated.


2014 ◽  
Vol 86 (12) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hyo Seung Park ◽  
Su Yeon Lee ◽  
Hyunsik Yoon ◽  
Insup Noh

Abstract Design of micro-patterning of hydrogel is of critical importance in both understanding cellular behaviors and mimicking controlled microenvironments and architectures of diverse well-organized tissues. After micro-patterning of hyaluronic acid (HA) hydrogel on a poly(dimethyl siloxane) substrate, its physical and biological properties have been compared with those of a non-patterned hydrogel for its possible applications in bone tissue engineering. The micro-patterned morphologies of HA hydrogel in both swollen and dehydrated forms have been observed with light microscope and scanning electron microscope, respectively, before and after in vitro cell culture. When MC3T3 bone cells were in vitro cultured on both HA hydrogels, the micro-patterned one shows excellence in cell proliferation and lining for 7 days along the micro-pattern paths over those of the non-patterned one, which have shown less cell-adhesiveness. The cytotoxicity of the micro-patterned HA hydrogels was in vitro evaluated by the assays of MTT, BrdU and Neutral red. The viability and morphology of MC3T3 cells on both HA hydrogels were observed with a fluorescence microscope by the live & dead assay, where their viability was confirmed by staining of F-actin development. The results of their H&E staining showed that both micro-patterned and non-patterned hydrogels induced development of tissue regeneration as observed by cell attachment, proliferation, and survivability, but the micro-patterned one induced distinctive patterning of both better initial cells adhesion on the micro-patterns and subsequently development of their proliferation and extracellular matrix, which were considered as important characteristics in their applications to tissue engineering.


2019 ◽  
Vol 21 (1) ◽  
pp. 99 ◽  
Author(s):  
Nopphadol Udomluck ◽  
Won-Gun Koh ◽  
Dong-Jin Lim ◽  
Hansoo Park

Bone tissue engineering is an alternative therapeutic intervention to repair or regenerate lost bone. This technique requires three essential components: stem cells that can differentiate into bone cells, growth factors that stimulate cell behavior for bone formation, and scaffolds that mimic the extracellular matrix. Among the various kinds of scaffolds, highly porous nanofibrous scaffolds are a potential candidate for supporting cell functions, such as adhesion, delivering growth factors, and forming new tissue. Various fabricating techniques for nanofibrous scaffolds have been investigated, including electrospinning, multi-axial electrospinning, and melt writing electrospinning. Although electrospun fiber fabrication has been possible for a decade, these fibers have gained attention in tissue regeneration owing to the possibility of further modifications of their chemical, biological, and mechanical properties. Recent reports suggest that post-modification after spinning make it possible to modify a nanofiber’s chemical and physical characteristics for regenerating specific target tissues. The objectives of this review are to describe the details of recently developed fabrication and post-modification techniques and discuss the advanced applications and impact of the integrated system of nanofiber-based scaffolds in the field of bone tissue engineering. This review highlights the importance of nanofibrous scaffolds for bone tissue engineering.


2008 ◽  
Vol 08 (02) ◽  
pp. 281-292 ◽  
Author(s):  
J. PIERRE ◽  
B. DAVID ◽  
H. PETITE ◽  
C. ODDOU

In orthopedics, a currently developed technique for large graft hybrid implants consists of using porous and biocompatible scaffolds seeded with a patient's bone cells. Successful culture in such large implants remains a challenge for biologists, and requires strict control of the physicochemical and mechanical environments achieved by perfusion within a bioreactor for several weeks. This perfusion, with a nutritive fluid carrying solute ingredients, is necessary for the active cells to grow, proliferate, differentiate, and produce extracellular matrices. An understanding and control of these processes, which lead to substrate degradation and extracellular matrix remodeling during the in vitro culture phase, depend widely on the success in the realization of new orthopedic biomaterials. Within this context, the analysis of the interactions between convective phenomena of hydrodynamic origin and chemical reactions of biological order which are associated to these processes is a fundamental challenge in the framework of bone tissue engineering. In order to better account for the different intricate processes taking place in such a sample and to design a relevant experimental protocol leading to the definition of an optimal tissue implant, we propose one- and two-dimensional theoretical models based on transport phenomena in porous active media.


Author(s):  
Udhab Adhikari ◽  
Nava P. Rijal ◽  
Shalil Khanal ◽  
Devdas Pai ◽  
Jagannathan Sankar ◽  
...  

Bone is a living tissue that constantly remodels and adapts to the stresses imposed upon it. Bone disorders are of growing concern as the median age of our population rises. Healing and recovery from fractures requires bone cells to have a 3-dimensional (3D) structural base, or scaffold, to grow out from. In addition to providing mechanical support, the scaffold, an extracellular matrix (ECM) assembly, enables the transport of nutrients and oxygen in and removal of waste materials from cells that are growing into new tissue. In this research, a 3D scaffold was synthesized with chitosan (CS), carboxymethyl chitosan (CMC), calcium phosphate monobasic and magnesium oxide (MgO). CS is a positiviely-charged natural bioactive polymer. It is combined with its negatively-charged derivative, CMC, to form a complex scaffold. Magnesium phosphate biocement (MgP), formed by reacting calcium phosphate monobasic and MgO, was incorporated into CMC solution before adding CS solution. Scaffolds were prepared by casting, freezing and lyophilization. The scaffolds were characterized in terms of pore microstructures, surface topography, water uptake and retention abilities, and crystal structure. The results show that the developed scaffolds exhibit highly interconnected pores and present the ideal pore size range (100–300 μm) to be morphometrically suitable for the proposed bone tissue engineering applications. These scaffolds not only mimic the nanostructured architecture and the chemical composition of natural bone tissue matrices but also serve as a source for soluble ions of magnesium (Mg++) and calcium (Ca++) that are favorable to osteoblast cells. The scaffolds thus provide a desirable microenvironment to facilitate biomineralization. These observations provide a new effective approach for preparing scaffold materials suitable for bone tissue engineering.


2020 ◽  
Vol 70 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Barbara Dariš ◽  
Željko Knez

AbstractPoly(3-hydroxybutyrate) is a natural polymer, produced by different bacteria, with good biocompatibility and biodegradability. Cardiovascular patches, scaffolds in tissue engineering and drug carriers are some of the possible biomedical applications of poly(3-hydroxybutyrate). In the past decade, many researchers examined the different physico-chemical modifications of poly(3-hydroxybutyrate) in order to improve its properties for use in the field of bone tissue engineering. Poly(3-hydroxybutyrate) composites with hydroxyapatite and bioglass are intensively tested with animal and human osteoblasts in vitro to provide information about their biocompatibility, biodegradability and osteoinductivity. Good bone regeneration was proven when poly(3-hydroxy-butyrate) patches were implanted in vivo in bone tissue of cats, minipigs and rats. This review summarizes the recent reports of in vitro and in vivo studies of pure poly(3-hydroxy-butyrate) and poly(3-hydroxybutyrate) composites with the emphasis on their bioactivity and biocompatibility with bone cells.


Author(s):  
Azarmidokht Jalali Jahromi ◽  
Mahboubeh Mirhosseini ◽  
Hosein Molla Hoseini ◽  
Habib Nikukar

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including limitation in graft preparation and immunological incompatibility, bone grafts face some limitations. In these cases, with the help of regenerative medicine, the bone damages could be repaired. Regenerative medicine provides a new approach for large bone defects by cell therapy and tissue engineering. As, sometime the damaged tissues are so wide that there is no chance of self-repair, the engineered structures help to accelerate the tissue natural repairing. This review focuses on the importance of stem cells and scaffolding for bone tissue engineering. Also, the important characteristics of bone tissue engineered scaffolds like structure, porosity, stability, surface chemistry, bone induction and different met hods of scaffold fabrication are discussed. Up to now, various natural and synthet ic compounds were used for bone tissue engineering, including biopolymers, which are categorized to natural, synthet ic and ceramics. Bioceramics work as effective compound scaffolds in bone tissue engineering. From them bioglasses are one of the important materials which enhance the attachment, proliferation and differentiation of bone cells. Therefore, the current paper discussed biopolymers, as the effective compounds for regeneration of bone tissue.


Sign in / Sign up

Export Citation Format

Share Document