Formation of Inverted Pyramid-Like Submicron Structures on Multicrystalline Silicon Using Nitric Acid as Oxidant in Metal Assisted Chemical Etching Process

2019 ◽  
Vol 216 (4) ◽  
pp. 1800636 ◽  
Author(s):  
Wangyang Yang ◽  
Honglie Shen ◽  
Ye Jiang ◽  
Quntao Tang ◽  
Adil Raza ◽  
...  
Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 402 ◽  
Author(s):  
Oscar Pérez-Díaz ◽  
Enrique Quiroga-González

A simple and inexpensive method to obtain Si conical structures is proposed. The method consists of a sequence of steps that include photolithography and metal assisted chemical etching (MACE) to create porous regions that are dissolved in a post-etching process. The proposed process takes advantage of the lateral etching obtained when using catalyst particles smaller than 40 nm for MACE. The final shape of the base of the structures is mainly given by the shape of the lithography mask used for the process. Conical structures ranging from units to hundreds of microns can be produced by this method. The advantage of the method is its simplicity, allowing the production of the structures in a basic chemical lab.


2014 ◽  
Vol 14 (12) ◽  
pp. 9224-9231 ◽  
Author(s):  
Bhaskar Parida ◽  
Jaeho Choi ◽  
Gyoungho Lim ◽  
Seungil Park ◽  
Keunjoo Kim

2005 ◽  
Vol 480-481 ◽  
pp. 139-144 ◽  
Author(s):  
T. Hadjersi ◽  
N. Gabouze ◽  
A. Ababou ◽  
M. Boumaour ◽  
W. Chergui ◽  
...  

A new metal-assisted chemical etching method using Na2S2O8 as an oxidant is proposed to form a porous layer on a multicrystalline silicon (mc-Si). This method does not need an external bias and enables formation of uniform porous silicon layers, more rapidly than the conventional stain etching method. A thin layer of Pd is deposited on the mc-Si surface prior to immersion in a solution of HF and Na2S2O8. The characterisations of etched layer formed by this method as a function of etching time were investigated by scanning electron microscopy, X-ray diffraction (XRD), Energy-dispersive X-ray (EDX) and reflectance spectroscopy. It shows that the surface is porous and the etching is independent of grain orientation. In addition, reflectance measurements made with a variety of etching conditions show a lowering of the reflectance from 25 % to 6 % measured with respect to the bare as-cut substrate. However, this result can be improved by changing the experimental conditions (concentration, time, temperature, …).


2021 ◽  
Author(s):  
Chun-Wen Lan ◽  
Subbiramaniyan Kubendhiran ◽  
Gavin Sison ◽  
Hsiao Ping Hsu

Abstract The concentrations of etchant solution substituents in metal assisted chemical etching (MACE) processes control the morphology and reflectivity of subsequently etched wafers. In particular, the concentration of hydrogen peroxide (H2O2) plays a vital role in the MACE process. Unfortunately, the H2O2 concentration is not stable when prolonging the etching process at higher temperatures. As a result, the commercialization of MACE processes for the production of IP texturization has appeared industrially unattractive. Herein, we proposed an innovative method to monitor hydrogen peroxide during the MACE process with an electrochemical method. Reduced graphene oxide (RGO) prepared through an environmentally benign electrochemical method was used to modify a screen-printed electrode (SPE). Under an optimized condition, the RGO/SPE was used to test etching solutions. The MACE process was conducted and the hydrogen peroxide concentration within the etching solution was checked by the RGO/SPE. The RGO/SPE demonstrated excellent electrochemical performance and could record changes to H2O2 concentrations with cyclic voltammetry (CV). Interestingly, the presence of copper (Cu) in the etching solution catalyzed not only the etching process, but also the electrochemical reduction of H2O2. After etching, the reflectivity and structural morphology of the etched wafers were checked. The described modified electrode is disposable, and the fabrication process is rapid and inexpensive, allowing for real time application in, and control of, MACE processes.


2021 ◽  
Vol 13 (19) ◽  
pp. 10766
Author(s):  
Mohammad Yasir Arafat ◽  
Mohammad Aminul Islam ◽  
Ahmad Wafi Bin Mahmood ◽  
Fairuz Abdullah ◽  
Mohammad Nur-E-Alam ◽  
...  

The metal-assisted chemical etching (MACE) technique is commonly employed for texturing the wafer surfaces when fabricating black silicon (BSi) solar cells and is considered to be a potential technique to improve the efficiency of traditional Si-based solar cells. This article aims to review the MACE technique along with its mechanism for Ag-, Cu- and Ni-assisted etching. Primarily, several essential aspects of the fabrication of BSi are discussed, including chemical reaction, etching direction, mass transfer, and the overall etching process of the MACE method. Thereafter, three metal catalysts (Ag, Cu, and Ni) are critically analyzed to identify their roles in producing cost-effective and sustainable BSi solar cells with higher quality and efficiency. The conducted study revealed that Ag-etched BSi wafers are more suitable for the growth of higher quality and efficiency Si solar cells compared to Cu- and Ni-etched BSi wafers. However, both Cu and Ni seem to be more cost-effective and more appropriate for the mass production of BSi solar cells than Ag-etched wafers. Meanwhile, the Ni-assisted chemical etching process takes a longer time than Cu but the Ni-etched BSi solar cells possess enhanced light absorption capacity and lower activity in terms of the dissolution and oxidation process than Cu-etched BSi solar cells.


Sign in / Sign up

Export Citation Format

Share Document