scholarly journals Giant Linear Magnetoresistance and Carrier Density Tunable Transport in Topological Crystalline Insulator SnTe Thin Film

2019 ◽  
Vol 256 (10) ◽  
pp. 1900139 ◽  
Author(s):  
Feng Wei ◽  
Xuan P. A. Gao ◽  
Song Ma ◽  
Zhidong Zhang
2014 ◽  
Vol 105 (17) ◽  
pp. 173506 ◽  
Author(s):  
Jack Hellerstedt ◽  
Mark T. Edmonds ◽  
J. H. Chen ◽  
William G. Cullen ◽  
C. X. Zheng ◽  
...  

2015 ◽  
Vol 118 (17) ◽  
pp. 175702 ◽  
Author(s):  
N. Shimosako ◽  
Y. Inose ◽  
H. Satoh ◽  
K. Kinjo ◽  
T. Nakaoka ◽  
...  

2014 ◽  
Vol 1635 ◽  
pp. 83-88
Author(s):  
Kenji Kikuchi ◽  
Shigeyuki Imura ◽  
Kazunori Miyakawa ◽  
Hiroshi Ohtake ◽  
Misao Kubota ◽  
...  

ABSTRACTWe examined the potential application of CuIn1-xGaxSe1-ySy (CIGS) film for visible light image sensors. CIGS chalcopyrite semiconductors, which are representative of high efficiency thin film solar cells, have both a high absorption coefficient and high quantum efficiency. However, their dark current is too high for image sensors. In this study, we applied gallium oxide (Ga2O3) as a hole-blocking layer for CIGS thin film to reduce the dark current. The dark current of this hetero-junction was 10-9 A/cm2 at less than 7 V. Moreover, an avalanche multiplication phenomenon was observed at an applied voltage of over 8 V. However, this structure had sensitivity only in the ultraviolet light region due to the much lower carrier density of the Ga2O3 layer. We therefore used a tin-doped Ga2O3 (Ga2O3:Sn) layer deposited by pulsed laser deposition (PLD) for the n-type layer to increase the carrier density. The sensitivity of the visible region was observed in the Ga2O3:Sn/CIGS hetero-junction. We also investigated the influence of the laser frequency of the PLD on the transmittance of Ga2O3:Sn and the quantum efficiency of this hetero-junction. Ga2O3:Sn film deposited at a 0.1-Hz laser repetition rate had higher transmittance than at a 10-Hz repetition rate. The Ga2O3:Sn/CIGS hetero-junction also had a higher quantum efficiency with the lower rate (50%) than with the higher rate (30%).


2014 ◽  
Vol 1603 ◽  
Author(s):  
Kenji Kikuchi ◽  
Shigeyuki Imura ◽  
Kazunori Miyakawa ◽  
Misao Kubota ◽  
Eiji Ohta

ABSTRACTThere is an increased need for highly sensitive imaging devices to develop high resolution and high speed image sensors. Incident light intensity per pixel of image sensors is getting lower because the pixel resolution and frame rate of image sensors are becoming higher. We investigated the feasibility of using a photoconductor with tin-doped gallium oxide (Ga2O3:Sn)/Cu(In,Ga)Se2 (CIGS) hetero-junction for visible light image sensors. CIGS chalcopyrite thin films have great potential for improving the sensitivity of image sensors and CIGS chalcopyrite semiconductors have both a high absorption coefficient and high quantum efficiency. Moreover, the band gap can be adjusted for visible light. We applied Ga2O3 as an n-type semiconductor layer and a hole-blocking layer to CIGS thin film to reduce the dark current. The experimental results revealed that dark current was drastically reduced due to the application of Ga2O3 thin film, and an avalanche multiplication phenomenon was observed at an applied voltage of over 6 V. However, non-doped Ga2O3/CIGS hetero-junction only had sensitivity in the ultraviolet light region because their depletion region was almost completely spread throughout the Ga2O3 layer due to the low carrier density of the Ga2O3 layer. Therefore, we used Ga2O3:Sn for the n-type layer to increase carrier density. As a result, the depletion region shifted to the CIGS film and the cells had sensitivity in all visible regions. These results indicate that Ga2O3:Sn/CIGS hetero-junction are feasible for visible light photoconductors.


1999 ◽  
Vol 259-261 ◽  
pp. 298-299 ◽  
Author(s):  
H. Meffert ◽  
J. Oster ◽  
P. Haibach ◽  
M. Huth ◽  
H. Adrian

Sign in / Sign up

Export Citation Format

Share Document