scholarly journals Spin‐Polarization and Resonant States in Electronic Conduction through a Correlated Magnetic Layer

Author(s):  
Andreas Weh ◽  
Wilhelm H. Appelt ◽  
Andreas Östlin ◽  
Liviu Chioncel ◽  
Ulrich Eckern
2008 ◽  
Vol 78 (24) ◽  
Author(s):  
S. Honda ◽  
H. Itoh ◽  
J. Inoue ◽  
H. Kurebayashi ◽  
T. Trypiniotis ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunfeng You ◽  
Hua Bai ◽  
Xiaoyu Feng ◽  
Xiaolong Fan ◽  
Lei Han ◽  
...  

AbstractOut-of-plane spin polarization σz has attracted increasing interests of researchers recently, due to its potential in high-density and low-power spintronic devices. Noncollinear antiferromagnet (AFM), which has unique 120° triangular spin configuration, has been discovered to possess σz. However, the physical origin of σz in noncollinear AFM is still not clear, and the external magnetic field-free switching of perpendicular magnetic layer using the corresponding σz has not been reported yet. Here, we use the cluster magnetic octupole in antiperovskite AFM Mn3SnN to demonstrate the generation of σz. σz is induced by the precession of carrier spins when currents flow through the cluster magnetic octupole, which also relies on the direction of the cluster magnetic octupole in conjunction with the applied current. With the aid of σz, current induced spin-orbit torque (SOT) switching of adjacent perpendicular ferromagnet is realized without external magnetic field. Our findings present a new perspective to the generation of out-of-plane spin polarizations via noncollinear AFM spin structure, and provide a potential path to realize ultrafast high-density applications.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Oleg E. Tereshchenko ◽  
Vladimir A. Golyashov ◽  
Vadim S. Rusetsky ◽  
Andrey V. Mironov ◽  
Alexander Yu. Demin ◽  
...  

The concept of an imaging-type 3D spin detector, based on the combination of spin-exchange interactions in the ferromagnetic (FM) film and spin selectivity of the electron–photon conversion effect in a semiconductor heterostructure, is proposed and demonstrated on a model system. This novel multichannel concept is based on the idea of direct transfer of a 2D spin-polarized electron distribution to image cathodoluminescence (CL). The detector is a hybrid structure consisting of a thin magnetic layer deposited on a semiconductor structure allowing measurement of the spatial and polarization-dependent CL intensity from injected spin-polarized free electrons. The idea is to use spin-dependent electron transmission through in-plane magnetized FM film for in-plane spin detection by measuring the CL intensity from recombined electrons transmitted in the semiconductor. For the incoming electrons with out-of-plane spin polarization, the intensity of circularly polarized CL light can be detected from recombined polarized electrons with holes in the semiconductor. In order to demonstrate the ability of the solid-state spin detector in the image-type mode operation, a spin detector prototype was developed, which consists of a compact proximity focused vacuum tube with a spin-polarized electron source [p-GaAs(Cs,O)], a negative electron affinity (NEA) photocathode and the target [semiconductor heterostructure with quantum wells also with NEA]. The injection of polarized low-energy electrons into the target by varying the kinetic energy in the range 0.5–3.0 eV and up to 1.3 keV was studied in image-type mode. The figure of merit as a function of electron kinetic energy and the target temperature is determined. The spin asymmetry of the CL intensity in a ferromagnetic/semiconductor (FM-SC) junction provides a compact optical method for measuring spin polarization of free-electron beams in image-type mode. The FM-SC detector has the potential for realizing multichannel 3D vectorial reconstruction of spin polarization in momentum microscope and angle-resolved photoelectron spectroscopy systems.


1971 ◽  
Vol 32 (C6) ◽  
pp. C6-185-C6-187
Author(s):  
A. DUDEK ◽  
P. E. HODGSON

Author(s):  
Nobuo Tsuda ◽  
Keiichiro Nasu ◽  
Akira Yanase ◽  
Kiiti Siratori

1970 ◽  
Vol 101 (8) ◽  
pp. 655-696 ◽  
Author(s):  
M.S. Dubovikov ◽  
Yurii A. Simonov

1980 ◽  
Vol 45 (6) ◽  
pp. 1669-1676 ◽  
Author(s):  
Pavel Kubáček

The first step of electrochemical oxidation of 2-phenyl- and 2-(4-tolyl)-1,3,4,7-tetramethylisoindoles in anhydrous acetonitrile produces relatively stable cationradicals which have been studied by means of EPR spectroscopy using the method of internal electrochemical generation of radicals under reduced temperature. The same electrochemical behaviour of the both studied derivatives and identical EPR spectra of their cationradicals can be explained within the Huckel MO method. The largest contribution to the magnitude of splitting constant of nitrogen nucleus is due to π-σ-spin polarization of C-N bonds caused by high spin abundance of pz-AO of carbon atoms. Half-life of decomposition of the studied cationradicals is 4 min at -30°C.


Sign in / Sign up

Export Citation Format

Share Document