Influence of Morphology controlled Cu 2 ZnSnSe 4 Nanoparticles for Environmental Remediation Process under Visible Light

Author(s):  
Meenkshisundaram Sai Prasanna ◽  
Charles Imla Mary ◽  
Muthu Senthilkumar ◽  
Gandhi Manobalaji ◽  
Moorthy Babu Sridharan
2021 ◽  
Author(s):  
YiLin Yin ◽  
Jingchao Liu ◽  
Zengnan Wu ◽  
Ting Zhang ◽  
Zenghe Li

As one of the most essential semiconductors, ZnO has been widely used for solar cells, photocatalysis, environmental remediation, etc. Doping and morphology control of ZnO can significantly improve the efficiency...


2014 ◽  
Vol 5 ◽  
pp. 658-666 ◽  
Author(s):  
Difa Xu ◽  
Shaowen Cao ◽  
Jinfeng Zhang ◽  
Bei Cheng ◽  
Jiaguo Yu

Silver chromate (Ag2CrO4) photocatalysts are prepared by microemulsion, precipitation, and hydrothermal methods, in order to investigate the effect of preparation methods on the structure and the visible-light photocatalytic activity. It is found that the photocatalytic activity of the prepared Ag2CrO4was highly dependent on the preparation methods. The sample prepared by microemulsion method exhibits the highest photocatalytic efficiency on the degradation of methylene blue (MB) under visible-light irradiation. The enhanced photocatalytic activity could be ascribed to the smaller particle size, higher surface area, relatively stronger light absorption, and blue-shift absorption edge, which result in the adsorption of more MB molecules, a shorter diffusion process of more photogenerated excitons, and a stronger oxidation ability of the photogenerated holes. Considering the universalities of microemulsion, precipitation, and hydrothermal methods, this work may also provide a prototype for the comparative study of semiconductor based photocatalysis for water purification and environmental remediation.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document