The effect of X-ray radiation on the structural and electrical properties of CdZnTe solid solution

2003 ◽  
Vol 0 (3) ◽  
pp. 897-901
Author(s):  
E. M. Pashaev ◽  
V. N. Peregudov ◽  
S. N. Yakunin ◽  
A. A. Zaitsev ◽  
T. G. Kolesnikova ◽  
...  
Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


2021 ◽  
Author(s):  
S Sasikumar ◽  
Huiqing Fan ◽  
Weijia Wang ◽  
T K Thirumalaisamy ◽  
S Saravanakumar ◽  
...  

2001 ◽  
Vol 666 ◽  
Author(s):  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara ◽  
Jagdish Narayan ◽  
Alexander M. Grishin

ABSTRACTWe prepared colossal magnetoresistive La0.8Sr0.2MnO3 thin films on the MgO, SrTiO3 and LaAlO3 single crystal substrates using KrF excimer pulsed laser ablation technique. The structural and electrical properties of the La0.8Sr0.2MnO3 thin films which were strained by the lattice mismatch are reported. The in-plane lattice mismatch between the La0.8Sr0.2MnO3 and MgO, SrTiO3 and LaAlO3 substrates are -7.8 %, -0.5 % and +2.3 %, respectively. The X-ray diffraction spectra of the films exhibited c-axis orientation. In the case of the La0.8Sr0.2MnO3 / LaAlO3 thin films with thickness over 100 nm, the divided (00l) peaks were observed. The surface morphology and transport property of the strongly stressed La0.8Sr0.2MnO3 / LaAlO3 were different from those of La0.8Sr0.2MnO3 / MgO and La0.8Sr0.2MnO3 / SrTiO3thin films.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750318 ◽  
Author(s):  
D. Venkatesh ◽  
K. V. Ramesh

Polycrystalline Cu substituted Ni–Zn ferrites with chemical composition Ni[Formula: see text]Zn[Formula: see text]-Cu[Formula: see text]Fe2O4 (x = 0.00 to 0.25 in steps of 0.05) have been prepared by citrate gel autocombustion method. The samples for electrical properties have been sintered at 900[Formula: see text]C for 4 h. The X-ray diffraction patterns of all samples indicate the formation of single phase spinel cubic structure. The value of lattice parameter is decreases with increasing Cu concentration. The estimated cation distribution can be derived from X-ray diffraction intensity calculations and IR spectra. The tetrahedral and octahedral bond lengths, bond angles, cation–cation and cation–anion distances were calculated by using experimental lattice parameter and oxygen positional parameters. It is observed that Cu ions are distributed in octahedral site and subsequently Ni and Fe ions in tetrahedral site. The grain size of all samples has been calculated by Scanning Electron Microscopy (SEM) images. The variations in DC electrical resistivity and dielectric constant have been explained on the basis of proposed cation distribution.


1996 ◽  
Vol 453 ◽  
Author(s):  
Igor Kosacki ◽  
Mark Shumsky ◽  
Harlan U. Anderson

AbstractThe structural and electrical properties of SrCe1-xYbxO3 ceramics have been studied as a function of temperature and Yb-concentration using x-ray diffraction and impedance techniques. The influence of Yb-dopants on electrical transport and structural disorder has been studied. A correlation between the structural properties, electrical conductivity is observed and discussed. These measurements allow us to determine the mechanism of charge carrier compensation and also the concentration and mobility of the electrical species.


2004 ◽  
Vol 811 ◽  
Author(s):  
Ortega Nora ◽  
S. Bhattacharyya ◽  
P. Bhattacharya ◽  
R.R. Das ◽  
R.S. Katiyar

ABSTRACTThe effect of anthanum substitution (0-20%) on phase formation, structural evolution and electrical properties of SrBi2Ta2O9 (SBT) ceramics were investigated. X-ray diffraction studies revealed that phase pure SBT bulk samples can be synthesized with lanthanum doping without any phase segregation. Raman spectroscopy was used to understand the lattice vibrational characteristics of La substituted SBT compound. The ferroelectric soft mode at 27 cm−1 was shifted towards the lower frequencies at room temperature with increase in La concentrations. The octahedral stretching mode (O-Ta-O) did not influenced by La substitution in SBT. The x-ray photoemission spectroscopy measurements showed the decrease of binding energy of Bi 4f core levels (5/2 and 7/2) upon La substitution in SBT. The dielectric constant was increased from 120 to 190 up to 10% La doping and decreased with further increase in La concentration.


2005 ◽  
Vol 19 (30) ◽  
pp. 1783-1791 ◽  
Author(s):  
O. P. THAKUR ◽  
CHANDRA PRAKASH

The effect of niobium doping on the structure and electrical properties with the following compositions Pb ( Zr 0.52 Ti 0.48)1-5X/4 Nb X O 3 with 0<x<0.025 was investigated. The materials were prepared by the usual ceramic technique using high purity raw materials. Disc-shaped samples of each compositions were sintered at 1250°C for 3 hours. The sample structure was determined by X-ray diffractometry. The average grain size, the maximum dielectric permittivity and the remnant polarization first increases up to x = 0.005 concentration of Nb 5+ and then decreases with higher concentration of niobium, while the coercive field does not show any variation. The transition temperature decreases with the increase in niobium concentration.


Sign in / Sign up

Export Citation Format

Share Document