Transient Polarization Reversal using an Intense THz Pulse in Silicon‐Doped Lead Germanate

Author(s):  
Vladislav Bilyk ◽  
Elena Mishina ◽  
Natalia Sherstyuk ◽  
Alexander Bush ◽  
Andrey Ovchinnikov ◽  
...  
2015 ◽  
Vol 99 ◽  
pp. 240-246 ◽  
Author(s):  
Dayu Zhou ◽  
Yan Guan ◽  
Melvin M. Vopson ◽  
Jin Xu ◽  
Hailong Liang ◽  
...  

1994 ◽  
Vol 33 (Part 1, No. 9B) ◽  
pp. 5536-5539 ◽  
Author(s):  
Alexei Gruverman ◽  
Nikolai Ponomarev ◽  
Koichiro Takahashi

1991 ◽  
Vol 1 (4) ◽  
pp. 503-510 ◽  
Author(s):  
P. Jeanjean ◽  
J. Sicart ◽  
J. L. Robert ◽  
F. Mollot ◽  
R. Planel

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Nils Dessmann ◽  
Nguyen H. Le ◽  
Viktoria Eless ◽  
Steven Chick ◽  
Kamyar Saeedi ◽  
...  

AbstractThird-order non-linearities are important because they allow control over light pulses in ubiquitous high-quality centro-symmetric materials like silicon and silica. Degenerate four-wave mixing provides a direct measure of the third-order non-linear sheet susceptibility χ(3)L (where L represents the material thickness) as well as technological possibilities such as optically gated detection and emission of photons. Using picosecond pulses from a free electron laser, we show that silicon doped with P or Bi has a value of χ(3)L in the THz domain that is higher than that reported for any other material in any wavelength band. The immediate implication of our results is the efficient generation of intense coherent THz light via upconversion (also a χ(3) process), and they open the door to exploitation of non-degenerate mixing and optical nonlinearities beyond the perturbative regime.


2021 ◽  
Vol 23 (5) ◽  
pp. 3407-3416
Author(s):  
Jin Yuan ◽  
Jian-Qing Dai ◽  
Cheng Ke ◽  
Zi-Cheng Wei

The interface coupling mechanism, charge doping effect, and effect of polarization reversal in the graphene/BiAlO3(0001) hybrid system are explored by first-principles DFT calculations.


2007 ◽  
Vol 82 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Zhang-Jian Zhou ◽  
Zhi-Hong Zhong ◽  
Chang-Chun Ge

The infra-red absorption spectrum of silicon doped with high densities of boron and phosphorus has been measured from 1 to 60 μm and at temperatures between 5 and 290 °K in order to observe the local and band mode vibrational absorption activated by these impurities. The major experimental problem, that of achieving a high degree of electrical compensation to eliminate free carrier absorption, was solved by using fast electron bombardment to introduce a controllable number of trapping centres. A series of experiments was conducted to eliminate the effects of these centres from the spectrum of the chemical impurities. The characteristic spectra of the substitutional boron and phosphorus have been analysed in detail in terms of the theory of Dawber & Elliott. For local modes activated by boron isotopes close agreement with theory has been found in number of lines, strength and frequency. From the latter it is estimated that the local force constants are weakened by less than 10 % on substituting boron for silicon in the lattice. Second harmonic lines are observed at a frequency 0.25 % less than twice that of the fundamentals. The band modes exhibit a striking in-band resonance at 0.0546 eV which was not theoretically predicted. This is attributed to phosphorus and analysis shows that the theory can give such a resonance but not with parameters associated with substitutional phosphorus and unchanged force constants. Most of the remaining features in the band modes can be interpreted satisfactorily in terms of substitutional boron but this requires some modification to published data on the density of states for pure silicon. Critical points for TO( L ), TO( X ) and LA( L ) phonons are clearly identified in the spectra.


Sign in / Sign up

Export Citation Format

Share Document