Asiaticoside Induces Type I Collagen Synthesis and Osteogenic Differentiation in Human Periodontal Ligament Cells

2012 ◽  
Vol 27 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Nunthawan Nowwarote ◽  
Thanaphum Osathanon ◽  
Peachaya Jitjaturunt ◽  
Sukuman Manopattanasoontorn ◽  
Prasit Pavasant
2018 ◽  
Vol 17 (1) ◽  
pp. 27-32
Author(s):  
Masaru Yamaguchi ◽  
Erika Nakayama ◽  
Mami Shimizu ◽  
Jun Kikuta ◽  
Satoshi Horihata ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomomi Nakamura ◽  
Motozo Yamashita ◽  
Kuniko Ikegami ◽  
Mio Suzuki ◽  
Manabu Yanagita ◽  
...  

AbstractAutophagy is a lysosomal protein degradation system in which the cell self-digests its intracellular protein components and organelles. Defects in autophagy contribute to the pathogenesis of age-related chronic diseases, such as myocardial infarction and rheumatoid arthritis, through defects in the extracellular matrix (ECM). However, little is known about autophagy in periodontal diseases characterised by the breakdown of periodontal tissue. Tooth-supportive periodontal ligament (PDL) tissue contains PDL cells that produce various ECM proteins such as collagen to maintain homeostasis in periodontal tissue. In this study, we aimed to clarify the physiological role of autophagy in periodontal tissue. We found that autophagy regulated type I collagen synthesis by elimination of misfolded proteins in human PDL (HPDL) cells. Inhibition of autophagy by E-64d and pepstatin A (PSA) or siATG5 treatment suppressed collagen production in HPDL cells at mRNA and protein levels. Immunoelectron microscopy revealed collagen fragments in autolysosomes. Accumulation of misfolded collagen in HPDL cells was confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. E-64d and PSA treatment suppressed and rapamycin treatment accelerated the hard tissue-forming ability of HPDL cells. Our findings suggest that autophagy is a crucial regulatory process that facilitates type I collagen synthesis and partly regulates osteoblastic differentiation of PDL cells.


Author(s):  
Lingjun Li ◽  
Yangheng Zhang ◽  
Min Wang ◽  
Jing Zhou ◽  
Qian Zhang ◽  
...  

Periodontitis is a chronic inflammatory disease with plaques as the initiating factor, which will induce the destruction of periodontal tissues. Numerous studies focused on how to obtain periodontal tissue regeneration in inflammatory environments. Previous studies have reported adenovirus-mediated human β-defensin 3 (hBD3) gene transfer could potentially enhance the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and bone repair in periodontitis. Gold nanoparticles (AuNPs), the ideal inorganic nanomaterials in biomedicine applications, were proved to have synergetic effects with gene transfection. To further observe the potential promoting effects, AuNPs were added to the transfected cells. The results showed the positive effects of osteogenic differentiation while applying AuNPs into hPDLCs transfected by adenovirus encoding hBD3 gene. In vivo, after rat periodontal ligament cell (rPDLC) transplantation into SD rats with periodontitis, AuNPs combined hBD3 gene modification could also promote periodontal regeneration. The p38 mitogen-activated protein kinase (MAPK) pathway was demonstrated to potentially regulate both the in vitro and in vivo processes. In conclusion, AuNPs can promote the osteogenic differentiation of hBD3 gene-modified hPDLCs and periodontal regeneration via the p38 MAPK pathway.


2012 ◽  
Vol 31 (5) ◽  
pp. 863-871 ◽  
Author(s):  
Kanitsak BOONANANTANASARN ◽  
Kajohnkiart JANEBODIN ◽  
Prapan SUPPAKPATANA ◽  
Tawepong ARAYAPISIT ◽  
Jit-aree RODSUTTHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document