Rosmarinic acid protects mice from imiquimod induced psoriasis‐like skin lesions by inhibiting the IL ‐23/Th17 axis via regulating Jak2/Stat3 signaling pathway

2021 ◽  
Author(s):  
Miaomiao Zhang ◽  
Ning Li ◽  
Ruhang Cai ◽  
Jiangyong Gu ◽  
Fuda Xie ◽  
...  
2022 ◽  
Vol 66 (1) ◽  
Author(s):  
Qingwen Li ◽  
Jiao Zhang ◽  
Shougang Liu ◽  
Fangfei Zhang ◽  
Jiayi Zhuang ◽  
...  

Psoriasis is a chronic inflammatory skin disease. Although miRNAs are reported to be associated with the pathogenesis of psoriasis, the contribution of individual microRNAs toward psoriasis remains unclear. The miR-17-92 cluster regulates cell growth and immune functions that are associated with psoriasis. miR-17-3p is a member of miR-17-92 cluster; however, its role in dermatological diseases remains unclear. Our study aims at investigating the effects of miR-17-3p and its potential target gene on keratinocytes proliferation and secretion of pro-inflammatory cytokine and their involvement in psoriasis. Initially, we found that miR-17-3p was upregulated in psoriatic skin lesions, and bioinformatic analyses suggested that CTR9 is likely to be a target gene of miR-17-3p. Quantitative reverse-transcriptase PCR and immunohistochemical analysis revealed that CTR9 expression was downregulated in psoriatic lesions. Using dual-luciferase reporter assays, we identified CTR9 as a direct target of miR-17-3p. Further functional experiments demonstrated that miR-17-3p promoted the proliferation and pro-inflammatory cytokine secretion of keratinocytes, whereas CTR9 exerted the opposite effects. Gain-of-function studies confirmed that CTR9 suppression partially accounted for the effects of miR-17-3p in keratinocytes. Furthermore, Western blot revealed that miR-17-3p activates the downstream STAT3 signaling pathway while CTR9 inactivates the STAT3 signaling pathway. Together, these findings indicate that miR-17-3p regulates keratinocyte proliferation and pro-inflammatory cytokine secretion partially by targeting the CTR9, which inactivates the downstream STAT3 protein, implying that miR-17-3p might be a novel therapeutic target for psoriasis.


2021 ◽  
pp. jim-2020-001437
Author(s):  
Ming Chen ◽  
Minghui Li ◽  
Na Zhang ◽  
Wenwen Sun ◽  
Hui Wang ◽  
...  

This study was aimed to investigate the effects of miR-218-5p on the proliferation, apoptosis, autophagy, and oxidative stress of rheumatoid arthritis synovial fibroblasts (RASFs), and the related mechanisms. Quantitative reverse transcription–PCR showed that the expression of miR-218-5p in rheumatoid arthritis synovial tissue was significantly higher than that in healthy synovial tissue. Compared with healthy synovial fibroblasts, miR-218-5p expression was obviously upregulated in RASFs, while KLF9 protein expression was markedly downregulated. Mechanistically, miR-218-5p could directly bind to the 3′ untranslated region of KLF9 to inhibit the expression of KLF9. Additionally, transfection of miR-218-5p small interfering RNA (siRNA) inhibited the proliferation but promoted apoptosis and autophagy of RASFs. Simultaneously, miR-218-5p silencing reduced reactive oxygen species and malondialdehyde levels and increased superoxide dismutase and glutathione peroxidase activity to improve oxidative stress in RASFs. More importantly, the introduction of KLF9 siRNA reversed the effects of miR-218-5p siRNA transfection on RASF proliferation, apoptosis, autophagy, and oxidative stress. What is more, silencing miR-218-5p inhibited the activation of JAK2/STAT3 signaling pathway by targeting KLF9. Collectively, knockdown of miR-218-5p could regulate the proliferation, apoptosis, autophagy and oxidative stress of RASFs by increasing the expression of KLF9 and inhibiting the activation of the JAK2/STAT3 signaling pathway, which may provide a potential target for the mechanism research of RA.


Sign in / Sign up

Export Citation Format

Share Document