scholarly journals A comparative study of universal quantum computing models: towards a physical unification A comparative study of universal quantum computing models: towards a physical unification

2021 ◽  
Author(s):  
Dong‐Sheng Wang
Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 329
Author(s):  
Tomoyuki Morimae ◽  
Suguru Tamaki

It is known that several sub-universal quantum computing models, such as the IQP model, the Boson sampling model, the one-clean qubit model, and the random circuit model, cannot be classically simulated in polynomial time under certain conjectures in classical complexity theory. Recently, these results have been improved to ``fine-grained" versions where even exponential-time classical simulations are excluded assuming certain classical fine-grained complexity conjectures. All these fine-grained results are, however, about the hardness of strong simulations or multiplicative-error sampling. It was open whether any fine-grained quantum supremacy result can be shown for a more realistic setup, namely, additive-error sampling. In this paper, we show the additive-error fine-grained quantum supremacy (under certain complexity assumptions). As examples, we consider the IQP model, a mixture of the IQP model and log-depth Boolean circuits, and Clifford+T circuits. Similar results should hold for other sub-universal models.


2019 ◽  
Vol 19 (13&14) ◽  
pp. 1089-1115
Author(s):  
Tomoyuki Morimae ◽  
Suguru Tamaki

(pp1089-1115) Tomoyuki Morimae and Suguru Tamaki doi: https://doi.org/10.26421/QIC19.13-14-2 Abstracts: Output probability distributions of several sub-universal quantum computing models cannot be classically efficiently sampled unless some unlikely consequences occur in classical complexity theory, such as the collapse of the polynomial-time hierarchy. These results, so called quantum supremacy, however, do not rule out possibilities of super-polynomial-time classical simulations. In this paper, we study ``fine-grained" version of quantum supremacy that excludes some exponential-time classical simulations. First, we focus on two sub-universal models, namely, the one-clean-qubit model (or the DQC1 model) and the HC1Q model. Assuming certain conjectures in fine-grained complexity theory, we show that for any a>0 output probability distributions of these models cannot be classically sampled within a constant multiplicative error and in 2^{(1-a)N+o(N)} time, where N is the number of qubits. Next, we consider universal quantum computing. For example, we consider quantum computing over Clifford and T gates, and show that under another fine-grained complexity conjecture, output probability distributions of Clifford-T quantum computing cannot be classically sampled in 2^{o(t)} time within a constant multiplicative error, where t is the number of T gates.


2020 ◽  
Vol 22 (5) ◽  
pp. 3048-3057 ◽  
Author(s):  
Maria A. Castellanos ◽  
Amro Dodin ◽  
Adam P. Willard

This manuscript presents a strategy for controlling the transformation of excitonic states through the design of circuits made up of coupled organic dye molecules.


2019 ◽  
Vol 1 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo M. Amaral ◽  
Klee Irwin

The fundamental group π 1 ( L ) of a knot or link L may be used to generate magic states appropriate for performing universal quantum computation and simultaneously for retrieving complete information about the processed quantum states. In this paper, one defines braids whose closure is the L of such a quantum computer model and computes their braid-induced Seifert surfaces and the corresponding Alexander polynomial. In particular, some d-fold coverings of the trefoil knot, with d = 3 , 4, 6, or 12, define appropriate links L, and the latter two cases connect to the Dynkin diagrams of E 6 and D 4 , respectively. In this new context, one finds that this correspondence continues with Kodaira’s classification of elliptic singular fibers. The Seifert fibered toroidal manifold Σ ′ , at the boundary of the singular fiber E 8 ˜ , allows possible models of quantum computing.


2020 ◽  
Vol 59 (5) ◽  
pp. 1875-1887 ◽  
Author(s):  
Shohreh Mirzaei ◽  
Ali Ahmadpour ◽  
Akbar Shahsavand ◽  
Hamed Rashidi ◽  
Arash Arami-Niya

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Wright ◽  
K. M. Beck ◽  
S. Debnath ◽  
J. M. Amini ◽  
Y. Nam ◽  
...  

AbstractThe field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities of 99.5$$\%$$%, average two-qubit-gate fidelities of 97.5$$\%$$%, and SPAM errors of 0.7$$\%$$%. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78$$\%$$% and 35$$\%$$%, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.


2013 ◽  
Vol 13 (3&4) ◽  
pp. 195-209
Author(s):  
Adam M. Meier ◽  
Bryan Eastin ◽  
Emanuel Knill

The distillation of magic states is an often-cited technique for enabling universal quantum computing once the error probability for a special subset of gates has been made negligible by other means. We present a routine for magic-state distillation that reduces the required overhead for a range of parameters of practical interest. Each iteration of the routine uses a four-qubit error-detecting code to distill the $+1$ eigenstate of the Hadamard gate at a cost of ten input states per two improved output states. Use of this routine in combination with the $15$-to-$1$ distillation routine described by Bravyi and Kitaev allows for further improvements in overhead.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 106 ◽  
Author(s):  
Tomoyuki Morimae ◽  
Yuki Takeuchi ◽  
Harumichi Nishimura

We introduce a simple sub-universal quantum computing model, which we call the Hadamard-classical circuit with one-qubit (HC1Q) model. It consists of a classical reversible circuit sandwiched by two layers of Hadamard gates, and therefore it is in the second level of the Fourier hierarchy. We show that output probability distributions of the HC1Q model cannot be classically efficiently sampled within a multiplicative error unless the polynomial-time hierarchy collapses to the second level. The proof technique is different from those used for previous sub-universal models, such as IQP, Boson Sampling, and DQC1, and therefore the technique itself might be useful for finding other sub-universal models that are hard to classically simulate. We also study the classical verification of quantum computing in the second level of the Fourier hierarchy. To this end, we define a promise problem, which we call the probability distribution distinguishability with maximum norm (PDD-Max). It is a promise problem to decide whether output probability distributions of two quantum circuits are far apart or close. We show that PDD-Max is BQP-complete, but if the two circuits are restricted to some types in the second level of the Fourier hierarchy, such as the HC1Q model or the IQP model, PDD-Max has a Merlin-Arthur system with quantum polynomial-time Merlin and classical probabilistic polynomial-time Arthur.


Sign in / Sign up

Export Citation Format

Share Document