scholarly journals Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses

2017 ◽  
Vol 27 (5) ◽  
pp. e1941 ◽  
Author(s):  
Ankita Agarwal ◽  
Manmohan Parida ◽  
Paban Kumar Dash
2019 ◽  
Vol 4 (1) ◽  
pp. 38 ◽  
Author(s):  
Andrew F. van den Hurk ◽  
Alyssa T. Pyke ◽  
John S. Mackenzie ◽  
Sonja Hall-Mendelin ◽  
Scott A. Ritchie

Japanese encephalitis virus (JEV) is a major cause of neurological disease in Asia. It is a zoonotic flavivirus transmitted between water birds and/or pigs by Culex mosquitoes; humans are dead-end hosts. In 1995, JEV emerged for the first time in northern Australia causing an unprecedented outbreak in the Torres Strait. In this article, we revisit the history of JEV in Australia and describe investigations of JEV transmission cycles in the Australian context. Public health responses to the incipient outbreak included vaccination and sentinel pig surveillance programs. Virus isolation and vector competence experiments incriminated Culex annulirostris as the likely regional vector. The role this species plays in transmission cycles depends on the availability of domestic pigs as a blood source. Experimental evidence suggests that native animals are relatively poor amplifying hosts of JEV. The persistence and predominantly annual virus activity between 1995 and 2005 suggested that JEV had become endemic in the Torres Strait. However, active surveillance was discontinued at the end of 2005, so the status of JEV in northern Australia is unknown. Novel mosquito-based surveillance systems provide a means to investigate whether JEV still occurs in the Torres Strait or is no longer a risk to Australia.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Bianca E Silva ◽  
Zvifadzo Matsena Zingoni ◽  
Lizette L. Koekemoer ◽  
Yael L. Dahan-Moss

Abstract Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Sofía Ocaña-Mayorga ◽  
Juan José Bustillos ◽  
Anita G. Villacís ◽  
C. Miguel Pinto ◽  
Simone Frédérique Brenière ◽  
...  

Understanding the blood meal patterns of insects that are vectors of diseases is fundamental in unveiling transmission dynamics and developing strategies to impede or decrease human–vector contact. Chagas disease has a complex transmission cycle that implies interactions between vectors, parasites and vertebrate hosts. In Ecuador, limited data on human infection are available; however, the presence of active transmission in endemic areas has been demonstrated. The aim of this study was to determine the diversity of hosts that serve as sources of blood for triatomines in domestic, peridomestic and sylvatic transmission cycles, in two endemic areas of Ecuador (central coastal and southern highland regions). Using conserved primers and DNA extracted from 507 intestinal content samples from five species of triatomines (60 Panstrongylus chinai, 17 Panstrongylus howardi, 1 Panstrongylus rufotuberculatus, 427 Rhodnius ecuadoriensis and 2 Triatoma carrioni) collected from 2006 to 2013, we amplified fragments of the cytb mitochondrial gene. After sequencing, blood meal sources were identified in 416 individuals (146 from central coastal and 270 from southern highland regions), achieving ≥ 95% identity with GenBank sequences (NCBI-BLAST tool). The results showed that humans are the main source of food for triatomines, indicating that human–vector contact is more frequent than previously thought. Although other groups of mammals, such as rodents, are also an available source of blood, birds (particularly chickens) might have a predominant role in the maintenance of triatomines in these areas. However, the diversity of sources of blood found might indicate a preference driven by triatomine species. Moreover, the presence of more than one source of blood in triatomines collected in the same place indicated that dispersal of vectors occurs regardless the availability of food. Dispersal capacity of triatomines needs to be evaluated to propose an effective strategy that limits human–vector contact and, in consequence, to decrease the risk of T. cruzi transmission.


Sign in / Sign up

Export Citation Format

Share Document