Applicability of the flood-pulse concept in a temperate floodplain river ecosystem: thermal and temporal components

2006 ◽  
Vol 22 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Harold L. Schramm ◽  
Michael A. Eggleton
Author(s):  
Jiqing Li ◽  
Jing Huang ◽  
Zhiming Xue ◽  
Pengteng Liang ◽  
Yueqiu Wu

Abstract Flood pulses are closely related to river ecosystem health. Reservoirs bring many benefits to flood control, power generation, shipping etc., but their attenuation effects on runoff flood pulses should not be ignored. Ecological operation can effectively reduce some negative ecological impacts brought by the reservoir. However, the inability to quantitatively assess ecological effects hinders the promotion of ecological operation in reservoir management. To solve this problem, we proposed 11 flood pulse indicators (FPI), a random simulation method and an ecology-economy coupling model in this study. In addition, we used four major Chinese carps as indicator species and the Three Gorges Reservoir as a case study to test the role of flood pulses in improving the ecological operation effects of the reservoir from the fish protection perspective. The results show that: (1) FPI can be controlled by the reservoir and reflect the flood pulse characteristics of runoff. (2) Random simulation method guides managers to optimize the discharge and formulate eco-friendly operation schemes. (3) Ecology-economy coupling model helps managers analyze the relationship between ecological operation effects and economic benefits. A comprehensive assessment can improve the acceptance of ecological operation, which is conducive to the sustainable development of river ecosystem.


2014 ◽  
Vol 64 ◽  
pp. 85-99 ◽  
Author(s):  
F.M. Keizer ◽  
P.P. Schot ◽  
T. Okruszko ◽  
J. Chormański ◽  
I. Kardel ◽  
...  

2004 ◽  
Vol 92 (5) ◽  
pp. 786-796 ◽  
Author(s):  
GER BOEDELTJE ◽  
JAN P. BAKKER ◽  
ALBERT TEN BRINKE ◽  
JAN M. VAN GROENENDAEL ◽  
MARTIN SOESBERGEN

2000 ◽  
Vol 14 (16-17) ◽  
pp. 2861-2883 ◽  
Author(s):  
K. Tockner ◽  
F. Malard ◽  
J. V. Ward

1999 ◽  
Vol 56 (12) ◽  
pp. 2282-2291 ◽  
Author(s):  
Steve Gutreuter ◽  
Andrew D Bartels ◽  
Kevin Irons ◽  
Mark B Sandheinrich

The flood-pulse concept (FPC) states that annual inundation is the principal force responsible for productivity and biotic interactions in river-floodplain systems. Somatic growth is one component of production, and we hypothesized that, if the FPC applies, growth of fishes that use the moving littoral zone should differ among years with differing flood pattern, whereas nonlittoral fishes would show no such response. Growth of largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus), species that exploit littoral resources, increased during a year having an unusual warm-season flood in the Upper Mississippi River system and was reduced during low-water years. Growth of white bass (Morone chrysops), which do not rely heavily on the littoral zone, did not differ significantly between the extreme-flood and low-water years. Patterns of growth of black crappie (Pomoxis nigromaculatus), which have intermediate dependence on the moving littoral zone, were somewhat ambiguous. These results are consistent with the hypothesis that the FPC applies, at least under certain conditions, to this temperate river system. Our results can also provide an important basis from which to assess some costs and benefits of water level management strategies in large regulated temperate rivers.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2785-2788
Author(s):  
Shuai Sun

Fluvial greenway connectivity has multiple dimensions, so it is the complex ecosystems of nature. The longitudinal connectivity of fluvial greenway is directly related to the natural flow of water, and is sensible and cognizable. The lateral Connectivity of fluvial greenway is closely linked to the Flood Pulse Concept and river cross-section design. The vertical connectivity of fluvial greenway refers to the vertical materials and energy circulation performance and the biocoenosis relevancy in the cross section of the river. They constitute the complicated continuum system of fluvial greenway.


1998 ◽  
Vol 49 (1) ◽  
pp. 55 ◽  
Author(s):  
J. T. Puckridge ◽  
F. Sheldon ◽  
K. F. Walker ◽  
A. J. Boulton

Ecological processes in large rivers are controlled by their flow variability. However, it is difficult to find measures of hydrological variability that characterize groups of rivers and can also be used to generate hypotheses about their ecology. Multivariate analyses of the hydrographs of 52 rivers worldwide revealed distinctive patterns of flow variability that were often correlated with climate. For example, there were groups of rivers that corresponded broadly with ‘tropical’ and ‘dryland’ climates. However, some rivers from continental climates occupy both extremes of this range, illustrating the limitations of simple classification. Individual rivers and groups of rivers may also have different hydrographic ‘signatures’, and attempts to combine measures of hydrological variability into indices mask biologically significant information. This paper identifies 11 relatively independent measures of hydrological variability that help categorize river types and are each associated with aspects of fish biology. Ways are suggested by which the Flood Pulse Concept can be expanded to encompass hydrological variability and accommodate differences among groups of rivers from different climatic regions. Such recognition of the complex role of hydrological variability enhances the value of the concept for river conservation, management and restoration.


Sign in / Sign up

Export Citation Format

Share Document