scholarly journals Concise Review: Therapeutic Potential of the Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Radiation-Induced Lung Injury: Progress and Hypotheses

2019 ◽  
Vol 8 (4) ◽  
pp. 344-354 ◽  
Author(s):  
Siguang Xu ◽  
Cong Liu ◽  
Hong-Long Ji
Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Xiaoyu Pu ◽  
Siyang Ma ◽  
Yan Gao ◽  
Tiankai Xu ◽  
Pengyu Chang ◽  
...  

Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1524 ◽  
Author(s):  
Mario Barilani ◽  
Valeria Peli ◽  
Alessandro Cherubini ◽  
Marta Dossena ◽  
Vincenza Dolo ◽  
...  

The therapeutic potential of mesenchymal stem cell (MSC) extracellular vesicles (EV) is currently under investigation in many pathological contexts. Both adult and perinatal MSC are being considered as sources of EV. Herein, we address antigen expression of cord blood and bone marrow MSC and released EV to define an identity and quality parameter of MSC EV as a medicinal product in the context of clinical applications. The research focuses on EV-shuttled neural/glial antigen 2 (NG2), which has previously been detected as a promising surface marker to distinguish perinatal versus adult MSC. Indeed, NG2 was significantly more abundant in cord blood than bone marrow MSC and MSC EV. Ultracentrifuge-isolated EV were then challenged for their pro-angiogenic properties on an xCELLigence system as quality control. NG2+ cord blood MSC EV, but not bone marrow MSC EV, promote bFGF and PDGF-AA proliferative effect on endothelial cells. Likewise, they successfully rescue angiostatin-induced endothelial cell growth arrest. In both cases, the effects are NG2-dependent. These results point at NG2 as an identity and quality parameter for cord blood MSC EV, paving the way for their clinical translation.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Tiankai Xu ◽  
Yuyu Zhang ◽  
Pengyu Chang ◽  
Shouliang Gong ◽  
Lihong Shao ◽  
...  

Transfusion ◽  
2018 ◽  
Vol 59 (S1) ◽  
pp. 876-883 ◽  
Author(s):  
Jae Hoon Lee ◽  
Jeonghyun Park ◽  
Jae-Woo Lee

Sign in / Sign up

Export Citation Format

Share Document