P-114: Green Quantum Dot Light-Emitting Diodes with High Color Purity and Their Efficiency Improvement

2018 ◽  
Vol 49 (1) ◽  
pp. 1640-1642
Author(s):  
Jaeyun Kim ◽  
Jeonghun Kwak
2021 ◽  
Vol 52 (1) ◽  
pp. 953-956
Author(s):  
Tatsuya Ryowa ◽  
Yusuke Sakakibara ◽  
Tadashi Kobashi ◽  
Keisuke Kitano ◽  
Masaya Ueda ◽  
...  

2017 ◽  
Vol 5 (8) ◽  
pp. 2066-2073 ◽  
Author(s):  
Rongzhen Cui ◽  
Weiqiang Liu ◽  
Liang Zhou ◽  
Xuesen Zhao ◽  
Yunlong Jiang ◽  
...  

High performance sensitized organic light-emitting diodes with high color purity were obtained by utilizing terbium or gadolinium complexes as sensitizers.


2021 ◽  
Vol 11 (6) ◽  
pp. 2828
Author(s):  
Byoung-Seong Jeong

In this study, the optimal structure for obtaining high green color purity was investigated by modeling quantum dot (QD)–organic light-emitting diodes (OLED). It was found that even if the green quantum dot (G-QD) density in the G-QD layer was 30%, the full width at half maximum (FWHM) in the green wavelength band could be minimized to achieve a sharp emission spectrum, but it was difficult to completely block the blue light leakage with the G-QD layer alone. This blue light leakage problem was solved by stacking a green color filter (G-CF) layer on top of the G-QD layer. When G-CF thickness 5 μm was stacked, blue light leakage was blocked completely, and the FWHM of the emission spectrum in the green wavelength band was minimized, resulting in high green color purity. It is expected that the overall color gamut of QD-OLED can be improved by optimizing the device that shows such excellent green color purity.


Author(s):  
Jianfeng Zhang ◽  
Bin Wei ◽  
Lin Wang ◽  
Xuyong Yang

Metal halide perovskite light-emitting diodes (PeLEDs) have emerged as one of the most promising candidates for next-generation high-resolution displays, due to their wide color gamut, high color purity and low-cost...


2020 ◽  
Vol 6 (4) ◽  
pp. eaay4045 ◽  
Author(s):  
Hong Chen ◽  
Jia Lin ◽  
Joohoon Kang ◽  
Qiao Kong ◽  
Dylan Lu ◽  
...  

Achieving perovskite-based high–color purity blue-emitting light-emitting diodes (LEDs) is still challenging. Here, we report successful synthesis of a series of blue-emissive two-dimensional Ruddlesden-Popper phase single crystals and their high–color purity blue-emitting LED demonstrations. Although this approach successfully achieves a series of bandgap emissions based on the different layer thicknesses, it still suffers from a conventional temperature-induced device degradation mechanism during high-voltage operations. To understand the underlying mechanism, we further elucidate temperature-induced device degradation by investigating the crystal structural and spectral evolution dynamics via in situ temperature-dependent single-crystal x-ray diffraction, photoluminescence (PL) characterization, and density functional theory calculation. The PL peak becomes asymmetrically broadened with a marked intensity decay, as temperature increases owing to [PbBr6]4− octahedra tilting and the organic chain disordering, which results in bandgap decrease. This study indicates that careful heat management under LED operation is a key factor to maintain the sharp and intense emission.


2011 ◽  
Vol 21 (19) ◽  
pp. 6869 ◽  
Author(s):  
Wei-Ren Liu ◽  
Chien-Hao Huang ◽  
Chih-Pin Wu ◽  
Yi-Chen Chiu ◽  
Yao-Tsung Yeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document