The fabrication of layer-by-layer mode LaCoO3film by pulsed laser deposition

2017 ◽  
Vol 49 (11) ◽  
pp. 1160-1164 ◽  
Author(s):  
Yue Liu ◽  
Kai Ma ◽  
Yanlong Yu
2002 ◽  
Vol 750 ◽  
Author(s):  
H. Wang ◽  
A. Gupta ◽  
Ashutosh Tiwari ◽  
X. Zhang ◽  
J. Narayan

ABSTRACTTiN-AlN binary-components have attracted a lot of interests in coatings of high speed cutting tools, due to their higher oxidation resistance, higher hardness, lower internal stresses and better adhesion. Especially, nanometer-scale multilayer structures of AlN/TiN show superior structural and mechanical properties due to their tremendous interface area and become one of the promising candidates for superhard coatings. Here we present a novel method to grow highly aligned TiN/AlN superlattice by pulsed laser deposition. In this method TiN and AlN targets are arranged in a special configuration that they can be ablated in sequence, giving alternate layer by layer growth of TiN(1nm)/AlN(4nm). X-ray diffraction and transmission electron microscopy (TEM) analysis showed the structure to be cubic for both TiN and AlN in the nanoscale multilayers. Microstructure and uniformity for the superlattice structure were studied by TEM and Scanning transmission electron microscopy with Z-contrast (STEM). Nanoindentation results indicated a higher hardness for this new structure than pure AlN and rule-of-mixtures value. Four point probe electrical resistivity measurements showed overall insulating behavior.


2010 ◽  
Vol 1256 ◽  
Author(s):  
John E Mathis ◽  
Gyula Eres ◽  
Claudia Cantoni ◽  
Kyunghoon Kim ◽  
Hans Christen

AbstractNanorods composed of complex oxides have been synthesized using hydrothermal and sol-gel methods, but pulsed-laser deposition (PLD) provides precise, layer-by-layer control of growth, and is the method of choice for synthesizing complex structures. However, producing complex-oxide nanorods by PLD has proved elusive.Here we report on our efforts to produce nanorods composed of the best-understood complex oxide, strontium titanate (STO). The results suggest it is indeed possible to produce STO nanorods via PLD by using a template of MgO nanorods.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Mark Huijben ◽  
Guus Rijnders ◽  
Hiroshi Yamamoto ◽  
Dave H. A. Blank

ABSTRACTThe CaFeOX(CFO) and LaFeO3(LFO) thin films as well as superlattices were fabricated on SrTiO3(100) substrates by pulsed laser deposition (PLD) method. The tetragonal LFO film grew with layer-by-layer growth mode until approximately 40 layers. In the case of CFO, initial three layers showed layer-by-layer growth, and afterward the growth mode was transferred to two layers-by-two layers (TLTL) growth mode. The RHEED oscillation was observed until the end of the growth, approximately 50nm. Orthorhombic twin CaFeO2.5 (CFO2.5) structure was obtained. However, it is expected that the initial three CFO layers are CaFeO3 (CFO3) with the valence of Fe4+. The CFO and LFO superlattice showed a step-terraces surface, and the superlattice satellite peaks in a 2θ-θ and reciprocal space mapping (RSM) x-ray diffraction (XRD) measurements, indicating that the clear interfaces were fabricated.


2020 ◽  
Author(s):  
Jérôme Wolfman ◽  
Beatrice Negulescu ◽  
Antoine Ruyter ◽  
Ndioba Niang ◽  
Nazir Jaber

In this chapter we will describe a new development of combinatorial pulsed laser deposition (CPLD) which targets the exploration of interface libraries. The idea is to modulate continuously the composition of interfaces on a few atomic layers in order to alter their functional properties. This unique combinatorial synthesis of interfaces is possible due to very specific PLD characteristics. The first one is its well-known ability for complex oxide stoichiometry transfer from the target to the film. The second one is the layer by layer control of thin film growth at the atomic level using in-situ RHEED characterization. The third one relates to the directionality of the ablated plume which allows for selective area deposition on the substrate using a mobile shadow-mask. However PLD also has some limitations and important PLD aspects to be considered for reliable CPLD are reviewed. Multiple examples regarding the control of interface magnetism in magnetic tunnel junctions and energy band and Schottky barrier height tuning in ferroelectric tunable capacitors are presented.


1994 ◽  
Vol 9 (11) ◽  
pp. 2733-2736 ◽  
Author(s):  
C.H. Olk ◽  
O. P. Karpenko ◽  
S. M. Yalisove ◽  
G. L. Doll ◽  
J.F. Mansfield

Epitaxial films of semiconducting iron disilicide (β-FeSi2) have been grown by pulsed laser deposition. We find that pulsed laser deposition creates conditions favorable to the formation of films with the smallest geometric misfit possessed by this material system. In situ reflection high energy electron diffraction results indicate a layer by layer growth of the silicide. Analysis of transmission electron diffraction data has determined that the films are single phase and that this growth method reproduces the epitaxial relationship: β-FeSi2 (001) ‖ Si(111).


Sign in / Sign up

Export Citation Format

Share Document