SIMS of organic layers with unknown matrix parameters: Locating the interface in dual beam argon gas cluster depth profiles

2019 ◽  
Vol 51 (13) ◽  
pp. 1332-1341 ◽  
Author(s):  
Rasmus Havelund ◽  
Martin P. Seah ◽  
Ian S. Gilmore
2005 ◽  
Vol 59 (4) ◽  
pp. 511-518 ◽  
Author(s):  
J. F. Power ◽  
S. W. Fu ◽  
O. V. Nepotchatykh

Dual beam laser light profile microscopy (LPM) was applied in this work to the depth mapping of the optical absorption coefficient in photo-degraded poly(vinyl chloride) films. Depth profiles followed the absorption coefficient of a conjugated polyene photoproduct at visible wavelengths in photolyzed films of approximately 200 μm thickness. Both continuous and layered (separable laminate) films were studied. The absorption coefficient profiles reconstructed from photo-degraded thin films showed the classic concentration profiles seen in the literature for PVC degraded in the presence of oxygen and nitrogen atmospheres. In the case of single thin layers with continuous properties, the depth profiles were smooth and regular with minimum spatial noise. In the LPM of laminate structures, more optical anomalies were present because of the multi-ply interfacial structures that appeared in both the images and the reconstructed depth profiles. Notwithstanding, it was possible to profile the optical absorption coefficient at a level of error comparable to standard microtome methods. The latter was determined by comparing the LPM results to a destructive layer-by-layer analysis performed in parallel on the imaged materials. The dual beam LPM method should be generally useful for establishing polyene concentration profiles in industrial materials produced by photochemical, thermal, and chemical degradation mechanisms.


2014 ◽  
Vol 116 (5) ◽  
pp. 054908 ◽  
Author(s):  
Anders J. Barlow ◽  
Jose F. Portoles ◽  
Peter J. Cumpson

2017 ◽  
Vol 49 (8) ◽  
pp. 721-727 ◽  
Author(s):  
Kazuma Takahashi ◽  
Satoka Aoyagi ◽  
Tomoko Kawashima

Author(s):  
A. T. Fisher ◽  
P. Angelini

Analytical electron microscopy (AEM) of the near surface microstructure of ion implanted ceramics can provide much information about these materials. Backthinning of specimens results in relatively large thin areas for analysis of precipitates, voids, dislocations, depth profiles of implanted species and other features. One of the most critical stages in the backthinning process is the ion milling procedure. Material sputtered during ion milling can redeposit on the back surface thereby contaminating the specimen with impurities such as Fe, Cr, Ni, Mo, Si, etc. These impurities may originate from the specimen, specimen platform and clamping plates, vacuum system, and other components. The contamination may take the form of discrete particles or continuous films [Fig. 1] and compromises many of the compositional and microstructural analyses. A method is being developed to protect the implanted surface by coating it with NaCl prior to backthinning. Impurities which deposit on the continuous NaCl film during ion milling are removed by immersing the specimen in water and floating the contaminants from the specimen as the salt dissolves.


Author(s):  
Jun Liu ◽  
Katie E. Gunnison ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

The interfacial structure between the organic and inorganic phases in biological hard tissues plays an important role in controlling the growth and the mechanical properties of these materials. The objective of this work was to investigate these interfaces in nacre by transmission electron microscopy. The nacreous section of several different seashells -- abalone, pearl oyster, and nautilus -- were studied. Nacre is a laminated composite material consisting of CaCO3 platelets (constituting > 90 vol.% of the overall composite) separated by a thin organic matrix. Nacre is of interest to biomimetics because of its highly ordered structure and a good combination of mechanical properties. In this study, electron transparent thin sections were prepared by a low-temperature ion-beam milling procedure and by ultramicrotomy. To reveal structures in the organic layers as well as in the interfacial region, samples were further subjected to chemical fixation and labeling, or chemical etching. All experiments were performed with a Philips 430T TEM/STEM at 300 keV with a liquid Nitrogen sample holder.


Sign in / Sign up

Export Citation Format

Share Document