Improved interfacial shear strength of CF/PA6 and CF/epoxy composites by grafting graphene oxide onto carbon fiber surface with hyperbranched polyglycerol

Author(s):  
Yingdan Zhu ◽  
Yunyun Ma ◽  
Chun Yan ◽  
Haibing Xu ◽  
Dong Liu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 159 ◽  
Author(s):  
László Szabó ◽  
Sari Imanishi ◽  
Fujie Tetsuo ◽  
Daisuke Hirose ◽  
Hisai Ueda ◽  
...  

While intensive efforts are made to prepare carbon fiber reinforced plastics from renewable sources, less emphasis is directed towards elaborating green approaches for carbon fiber surface modification to improve the interfacial adhesion in these composites. In this study, we covalently attach lignin, a renewable feedstock, to a graphitic surface for the first time. The covalent bond is established via aromatic anchoring groups with amine functions taking part in a nucleophilic displacement reaction with a tosylated lignin derivative. The successful grafting procedures were confirmed by cyclic voltammetry, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Both fragmentation and microdroplet tests were conducted to evaluate the interfacial shear strength of lignin coated carbon fiber samples embedded in a green cellulose propionate matrix and in a commercially used epoxy resin. The microdroplet test showed ~27% and ~65% increases in interfacial shear strength for the epoxy and cellulose propionate matrix, respectively. For the epoxy matrix covalent bond, it is expected to form with lignin, while for the cellulosic matrix hydrogen bond formation might take place; furthermore, plastisizing effects are also considered. Our study opens the gates for utilizing lignin coating to improve the shear tolerance of innovative composites.


2019 ◽  
Vol 8 (1) ◽  
pp. 484-492 ◽  
Author(s):  
Yinqiu Wu ◽  
Bolin Tang ◽  
Kun Liu ◽  
Xiaoling Zeng ◽  
Jingjing Lu ◽  
...  

Abstract The reinforcing effect of graphene oxide (GO) in enhancing the flexural strength and flexural modulus of aramid fiber (AF)/epoxy composites were investigated with GO-AFs at a weight fraction of 0.1-0.7%. The flexural strength and flexural modulus of the composite reached 87.16 MPa and 1054.7 MPa, respectively, which were about 21.19% and 40.86% higher than those of the pure epoxy resin, respectively. In addition, the flexural properties and interfacial shear strength (IFSS) of composite reinforced by GO-AFs were much higher than the composites reinforced by AFs due to GO improved the interfacial bonding between the reinforcement material and matrix.


Sign in / Sign up

Export Citation Format

Share Document