Negligible Effect on the Structure and Vibrational Spectral Dynamics of Water Molecules Near Hydrophobic Solutes

2020 ◽  
Vol 5 (37) ◽  
pp. 11549-11559
Author(s):  
Sohag Biswas ◽  
Bhabani S. Mallik
2016 ◽  
Vol 114 (2) ◽  
pp. 322-327 ◽  
Author(s):  
Joze Grdadolnik ◽  
Franci Merzel ◽  
Franc Avbelj

Hydrophobicity plays an important role in numerous physicochemical processes from the process of dissolution in water to protein folding, but its origin at the fundamental level is still unclear. The classical view of hydrophobic hydration is that, in the presence of a hydrophobic solute, water forms transient microscopic “icebergs” arising from strengthened water hydrogen bonding, but there is no experimental evidence for enhanced hydrogen bonding and/or icebergs in such solutions. Here, we have used the redshifts and line shapes of the isotopically decoupled IR oxygen–deuterium (O-D) stretching mode of HDO water near small purely hydrophobic solutes (methane, ethane, krypton, and xenon) to study hydrophobicity at the most fundamental level. We present unequivocal and model-free experimental proof for the presence of strengthened water hydrogen bonds near four hydrophobic solutes, matching those in ice and clathrates. The water molecules involved in the enhanced hydrogen bonds display extensive structural ordering resembling that in clathrates. The number of ice-like hydrogen bonds is 10–15 per methane molecule. Ab initio molecular dynamics simulations have confirmed that water molecules in the vicinity of methane form stronger, more numerous, and more tetrahedrally oriented hydrogen bonds than those in bulk water and that their mobility is restricted. We show the absence of intercalating water molecules that cause the electrostatic screening (shielding) of hydrogen bonds in bulk water as the critical element for the enhanced hydrogen bonding around a hydrophobic solute. Our results confirm the classical view of hydrophobic hydration.


1996 ◽  
Vol 463 ◽  
Author(s):  
Shekhar Garde ◽  
Gerhard Hummer ◽  
Michael E. Paulaitis ◽  
Angel E. Garcia

We present a method that uses two- and three-particle correlation functions between solute atoms and water molecules to approximate the density profile of water surrounding biomolecules. The method is based on a potential of mean force expansion and uses X-ray crystallography, NMR, or modeling structural input information on the biomolecule. For small hydrophobic solutes, we have calculated entropies of hydration using the predicted water densities that are in good agreement with experimental results. We have also predicted the hydration of thecatabolite activator protein-DNAcomplex. The method is extremely efficient and makes possible the study of hydration of large biomolecules within CPU minutes.


2021 ◽  
Vol 23 (11) ◽  
pp. 6665-6676
Author(s):  
Aritri Biswas ◽  
Bhabani S. Mallik

We studied the conformation-induced spectral response of water molecules due to site-specific structural alterations of solvated hydrogen peroxide (H2O2) employing DFT-based first principles molecular dynamics (FPMD) simulations.


2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


2017 ◽  
Vol 5 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Azaria Robiana ◽  
M. Yashin Nahar ◽  
Hamidah Harahap

Glycerin residue is waste oleochemical industry that still contain glycerin. To produce quality and maximum quantity of glycerin, then research the effect of pH acidification using phosphoric acid. Glycerin analysis includes the analysis of pH, Fatty Acid and Ester (FAE), and analysis of the levels of glycerin. The maximum yield obtained at pH acidification 2 is grading 91,60% glycerin and Fatty Acid and Ester (FAE) 3,63 meq/100 g. Glycerin obtained is used as a plasticizer in the manufacture of bioplastics. Manufacture of bioplastics using the method of pouring a solution with varying concentrations of starch banana weevil (5% w/v and 7% w/v), variations of the addition of glycerin (1 ml, 3 ml, 5 ml and 7 ml), and a variety of gelatinization temperature (60°C, 70°C, and 80°C). Analysis of bioplastics include FTIR testing, tensile strength that is supported by SEM analysis. The results obtained in the analysis of FTIR does not form a new cluster on bioplastics starch banana weevil, but only a shift in the recharge area only, it is due to the addition of O-H groups originating from water molecules that enter the polysaccharide through a mechanism gelatinitation that generates interaction hydrogen bonding strengthened. The maximum tensile strength of bioplastics produced at a concentration of starch 7% w/v, 1 ml glycerine and gelatinization temperature of 80°C is 3,430 MPa. While the tensile strength bioplastic decreased with increasing glycerin which can be shown from the results of SEM where there is a crack, indentations and lumps of starch insoluble.


Sign in / Sign up

Export Citation Format

Share Document