Immobilized Na 2 WO 4 .2H 2 O on Arginine Modified Bentonite (Bentonite@L‐Arginine‐WO 3 ): An Efficient and Sustainable Catalyst for the C−C Bond Formation

2021 ◽  
Vol 6 (40) ◽  
pp. 11054-11059
Author(s):  
Zahra Taherinia ◽  
Arash Ghorbani‐Choghamarani
Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2020 ◽  
Author(s):  
Rui Guo ◽  
Xiaotian Qi ◽  
Hengye Xiang ◽  
Paul Geaneoates ◽  
Ruihan Wang ◽  
...  

Vinyl fluorides play an important role in drug development as they serve as bioisosteres for peptide bonds and are found in a range of biologically active molecules. The discovery of safe, general and practical procedures to prepare vinyl fluorides remains an important goal and challenge for synthetic chemistry. Here we introduce an inexpensive and easily-handled reagent and report simple, scalable, and metal-free protocols for the regioselective and stereodivergent hydrofluorination of alkynes to access both the E and Z isomers of vinyl fluorides. These conditions were suitable for a diverse collection of alkynes, including several highly-functionalized pharmaceutical derivatives. Mechanistic and DFT studies support C–F bond formation through a vinyl cation intermediate, with the (E)- and (Z)-hydrofluorination products forming under kinetic and thermodynamic control, respectively.<br>


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


2018 ◽  
Author(s):  
Mohit Kapoor ◽  
Pratibha Chand-Thakuri ◽  
Michael Young

Carbon-carbon bond formation by transition metal-catalyzed C–H activation has become an important strategy to fabricate new bonds in a rapid fashion. Despite the pharmacological importance of <i>ortho</i>-arylbenzylamines, however, effective <i>ortho</i>-C–C bond formation from C–H bond activation of free primary and secondary benzylamines using Pd<sup>II</sup> remains an outstanding challenge. Presented herein is a new strategy for constructing <i>ortho</i>-arylated primary and secondary benzylamines mediated by carbon dioxide (CO<sub>2</sub>). The use of CO<sub>2</sub> is critical to allowing this transformation to proceed under milder conditions than previously reported, and that are necessary to furnish free amine products that can be directly used or elaborated without the need for deprotection. In cases where diarylation is possible, a chelate effect is demonstrated to facilitate selective monoarylation.


2019 ◽  
Author(s):  
Abolghasem (Gus) Bakhoda ◽  
Stefan Wiese ◽  
Christine Greene ◽  
Bryan C. Figula ◽  
Jeffery A. Bertke ◽  
...  

<p>The dinuclear b-diketiminato Ni<sup>II</sup><i>tert</i>-butoxide {[Me<sub>3</sub>NN]Ni}<sub>2</sub>(<i>μ</i>-O<i><sup>t</sup></i>Bu)<sub>2 </sub>(<b>2</b>), synthesized from [Me<sub>3</sub>NN]Ni(2,4-lutidine) (<b>1</b>) and di-<i>tert</i>-butylperoxide, is a versatile precursor for the synthesis of a series of Ni<sup>II</sup>complexes [Me<sub>3</sub>NN]Ni-FG to illustrate C-C, C-N, and C-O bond formation at Ni<sup>II </sup>via radicals. {[Me<sub>3</sub>NN]Ni}<sub>2</sub>(<i>μ</i>-O<i><sup>t</sup></i>Bu)<sub>2 </sub>reacts with nitromethane, alkyl and aryl amines, acetophenone, benzamide, ammonia and phenols to deliver corresponding mono- or dinuclear [Me<sub>3</sub>NN]Ni-FG species (FG = O<sub>2</sub>NCH<sub>2</sub>, R-NH, ArNH, PhC(O)NH, PhC(O)CH<sub>2</sub>, NH<sub>2</sub>and OAr). Many of these Ni<sup>II </sup>complexes are capable of capturing the benzylic radical PhCH(•)CH<sub>3 </sub>to deliver corresponding PhCH(FG)CH<sub>3 </sub>products featuring C-C, C-N or C-O bonds. DFT studies shed light on the mechanism of these transformations and suggest two competing pathways that depend on the nature of the functional groups. These radical capture reactions at [Ni<sup>II</sup>]-FG complexes outline key C-C, C-N, and C-O bond forming steps and suggest new families of nickel radical relay catalysts.</p>


Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.


Sign in / Sign up

Export Citation Format

Share Document