Paraptosis-Inducing Nanomedicine Overcomes Cancer Drug Resistance for a Potent Cancer Therapy

Small ◽  
2018 ◽  
Vol 14 (7) ◽  
pp. 1702446 ◽  
Author(s):  
Yongcun Zhou ◽  
Feiteng Huang ◽  
Ying Yang ◽  
Pingli Wang ◽  
Zhen Zhang ◽  
...  
2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2019 ◽  
Vol 10 (26) ◽  
pp. 6693-6702 ◽  
Author(s):  
Wenyuan Zhao ◽  
Bin Shan ◽  
Dan He ◽  
Yuanda Cheng ◽  
Bin Li ◽  
...  

Author(s):  
Peng Xie ◽  
Yushu Wang ◽  
Dengshuai Wei ◽  
Lingpu Zhang ◽  
Bin Zhang ◽  
...  

The mechanisms of chemoresistance and nanoparticle-based drug delivery systems for platinum drugs were detailed summarized in this review. The current combination therapy provided an effective strategy to overcome the platinum drug resistance.


Author(s):  
Hai Wang ◽  
Pranay Agarwal ◽  
Gang Zhao ◽  
Guang Ji ◽  
Christopher M. Jewell ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1092
Author(s):  
Dandan Zhu ◽  
Huanle Zhang ◽  
Yuanzheng Huang ◽  
Baoping Lian ◽  
Chi Ma ◽  
...  

Despite being a mainstay of clinical cancer treatment, chemotherapy is limited by its severe side effects and inherent or acquired drug resistance. Nanotechnology-based drug-delivery systems are widely expected to bring new hope for cancer therapy. These systems exploit the ability of nanomaterials to accumulate and deliver anticancer drugs at the tumor site via the enhanced permeability and retention effect. Here, we established a novel drug-delivery nanosystem based on amphiphilic peptide dendrimers (AmPDs) composed of a hydrophobic alkyl chain and a hydrophilic polylysine dendron with different generations (AmPD KK2 and AmPD KK2K4). These AmPDs assembled into nanoassemblies for efficient encapsulation of the anti-cancer drug doxorubicin (DOX). The AmPDs/DOX nanoformulations improved the intracellular uptake and accumulation of DOX in drug-resistant breast cancer cells and increased permeation in 3D multicellular tumor spheroids in comparison with free DOX. Thus, they exerted effective anticancer activity while circumventing drug resistance in 2D and 3D breast cancer models. Interestingly, AmPD KK2 bearing a smaller peptide dendron encapsulated DOX to form more stable nanoparticles than AmPD KK2K4 bearing a larger peptide dendron, resulting in better cellular uptake, penetration, and anti-proliferative activity. This may be because AmPD KK2 maintains a better balance between hydrophobicity and hydrophilicity to achieve optimal self-assembly, thereby facilitating more stable drug encapsulation and efficient drug release. Together, our study provides a promising perspective on the design of the safe and efficient cancer drug-delivery nanosystems based on the self-assembling amphiphilic peptide dendrimer.


Sign in / Sign up

Export Citation Format

Share Document