Self‐Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation

Small ◽  
2019 ◽  
Vol 15 (21) ◽  
pp. 1804651 ◽  
Author(s):  
Li Mei Zhang ◽  
Yuan He ◽  
Sibo Cheng ◽  
Hao Sheng ◽  
Keren Dai ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gul Hassan ◽  
Muhammad Umair Khan ◽  
Jinho Bae ◽  
Ahmed Shuja

Abstract In recent years, self-healing property has getting tremendous attention in the future wearable electronic. This paper proposes a novel cut-able and highly stretchable strain sensor utilizing a self-healing function from magnetic force of magnetic iron oxide and graphene nano-composite on an engineered self-healable polyurethane substrate through commercialized inkjet printer DMP-3000. Inducing the magnetic property, magnetic iron oxide is applied to connect between graphene flacks in the nano-composite. To find the best nano-composite, the optimum graphene and magnetic iron oxide blending ratio is 1:1. The proposed sensor shows a high mechanical fracture recovery, sensitivity towards strain, and excellent self-healing property. The proposed devices maintain their performance over 10,000 times bending/relaxing cycles, and 94% of their function are recovered even after cutting them. The device also demonstrates stretchability up to 54.5% and a stretching factor is decreased down to 32.5% after cutting them. The gauge factor of the device is 271.4 at 35%, which means its sensitivity is good. Hence, these results may open a new opportunity towards the design and fabrication of future self-healing wearable strain sensors and their applied electronic devices.


2019 ◽  
Vol 12 (1) ◽  
pp. 1558-1566 ◽  
Author(s):  
Jie Wang ◽  
Fu Tang ◽  
Yue Wang ◽  
Qipeng Lu ◽  
Shuqi Liu ◽  
...  

2020 ◽  
Vol 15 (sup1) ◽  
pp. 520-531
Author(s):  
Binbin Guo ◽  
Xinzhu Ji ◽  
Xiaoteng Chen ◽  
Gang Li ◽  
Yongguang Lu ◽  
...  

2020 ◽  
Vol 8 (48) ◽  
pp. 17349-17364
Author(s):  
Jianyu Yin ◽  
Shenxin Pan ◽  
Lili Wu ◽  
Liyina Tan ◽  
Di Chen ◽  
...  

A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


2021 ◽  
Vol 13 (7) ◽  
pp. 9043-9052
Author(s):  
Peiyao Qu ◽  
Chi Lv ◽  
Yuhao Qi ◽  
Lu Bai ◽  
Junping Zheng

RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 79114-79120 ◽  
Author(s):  
Yichun Ding ◽  
Jack Yang ◽  
Charles R. Tolle ◽  
Zhengtao Zhu

A highly stretchable and sensitive strain sensor assembled by embedding a free-standing electrospun carbon nanofibers (CNFs) mat in a polyurethane (PU) matrix shows a fast, stable, and reproducible response to strain up to 300%.


Sign in / Sign up

Export Citation Format

Share Document