Highly Reversible Cycling of Zn‐MnO 2 Batteries Integrated with Acid‐Treated Carbon Supportive Layer

Small Methods ◽  
2021 ◽  
pp. 2101060
Author(s):  
Byung Gon Kim ◽  
Sang Wook Park ◽  
Hong Jun Choi ◽  
Jun‐Woo Park ◽  
Hongkyung Lee ◽  
...  
Keyword(s):  
Alloy Digest ◽  
1977 ◽  
Vol 26 (3) ◽  

Abstract FROSTLINE is a fine-grain, columbium-treated carbon steel designed to be an economical solution to structural design requirements at cold temperatures. Available in plate thicknesses up to 6 inches, it offers high levels of toughness at temperatures to 80 F and higher strength levels than conventional carbon steels. Frostline also offers excellent welding characteristics, because of its low carbon equivalent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: CS-67. Producer or source: Lukens Steel Company.


2014 ◽  
Vol 1061-1062 ◽  
pp. 170-174
Author(s):  
Jian Li

The effects of surface treatment of a carbon fiber (CF) by Polyethylene-polyamine (PEPA) on the interfacial adhesion behavior and morphology of polypropylene/polystyrene (PP/PS) matrix blends filled CF composites were investigated. Effects of surface treated a commercial CF on mechanical properties are studied. Contact angle was measured to examine the changes in wettability of the carbon fiber. The chemical and morphological changes were characterized by using X-ray photoelectron spectroscopy (XPS). PP/PS/CF composites were fabricated with and without PEPA treatment, and their interlaminar fracture toughnesses were compared. The results showed that the interlaminar shear strength (ILSS) of composites has been greatly improved filled PEPA modification CF. The water contact angle of resin sample decreased 50% after addition of PEPA surface treated CF.


2014 ◽  
Vol 804 ◽  
pp. 149-152 ◽  
Author(s):  
Ji Sun Kim ◽  
Jae Ho Baek ◽  
Myung Hwan Kim ◽  
Seong Soo Hong ◽  
Man Sig Lee

In this study, we confirmed effect of carbon pre-treatment on Pd dispersion in synthesis of Pd/C catalyst. Physical characteristics on the surface of before and after pre-treated carbon were analyzed by nitrogen adsorption-desorption analysis. The dispersion and size of Pd particles were analyzed by XRD, FE-TEM and CO-chemisorption. After pre-treatment, surface area of carbon were decreased. And mesopore area ratio were increased with decreasing micropore area ratio. In the case of pre-treated carbon, we confirmed high dispersion of Pd particles.


2012 ◽  
Vol 26 (1) ◽  
pp. 362-371 ◽  
Author(s):  
Antanas Laukaitis ◽  
Jadvyga Kerienė ◽  
Modestas Kligys ◽  
Donatas Mikulskis ◽  
Lina Lekūnaitė

2007 ◽  
Vol 106 (3) ◽  
pp. 1733-1741 ◽  
Author(s):  
Chun Lu ◽  
Ping Chen ◽  
Qi Yu ◽  
Zhenfeng Ding ◽  
Zaiwen Lin ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


Sign in / Sign up

Export Citation Format

Share Document