Influence of Tempering Temperature on the Microstructure and Wear Properties of Powder Metallurgy High‐speed steels

Author(s):  
Cheng Lyu ◽  
Yao Yao ◽  
Xianglin Zhang ◽  
Yiyuan Luo
Alloy Digest ◽  
2019 ◽  
Vol 68 (10) ◽  

Abstract YSS HAP72 is a powder metallurgy high-speed tool steel with a very high wear resistance. This datasheet provides information on composition, hardness, and bend strength. It also includes information on high temperature performance. Filing Code: TS-779. Producer or source: Hitachi Metals America Ltd.


Alloy Digest ◽  
1998 ◽  
Vol 47 (10) ◽  

Abstract Vanadis 23 is a Cr-Mo-W-Va alloyed high-speed steel made by powder metallurgy. The tool steel offers an excellent combination of wear resistance and toughness. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on heat treating, machining, and surface treatment. Filing Code: TS-561. Producer or source: Uddeholm Corporation. See also Alloy Digest TS-552, March 1997.


Alloy Digest ◽  
1990 ◽  
Vol 39 (8) ◽  

Abstract LESCOT-15 PM is a special purpose tungsten type high-speed tool steel containing cobalt for good retention of hot hardness and high carbon and vanadium for enhanced abrasion resistance. It is produced by powder metallurgy. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-498. Producer or source: Latrobe Steel Company. Originally published August 1989, revised August 1990.


Wear ◽  
2015 ◽  
Vol 322-323 ◽  
pp. 117-125 ◽  
Author(s):  
F. Fasahat ◽  
Roya Dastjerdi ◽  
M.R.M. Mojtahedi ◽  
P. Hoseini

2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


2014 ◽  
Vol 788 ◽  
pp. 329-333
Author(s):  
Rui Zhou ◽  
Xiao Gang Diao ◽  
Jun Chen ◽  
Xiao Nan Du ◽  
Guo Ding Yuan ◽  
...  

Effects of sintering temperatures on the microstructure and mechanical performance of SPS M3:2 high speed steel prepared by spark plasma sintering was studied. High speed steel sintering curve of continuous heating from ambient temperature to 1200°C was estimated to analyze the sintering processes and sintering temperature range. The sintering temperature within this range was divided into groups to investigate hardness, relative density and microstructure of M3:2 high-speed steel. Strip and quadrate carbides were observed inside the equiaxed grains. SPS sintering temperature at 900°C can lead to nearly full densification with grain size smaller than 20μm. The hardness and bending strength are higher than that of the conventionally powder metallurgy fabricated ones sintered at 1270°C. However, fracture toughness of the high speed steel is lower than that of the conventional powder metallurgy steels. This can be attributed to the shape and distribution of M6C carbides which reduce the impact toughness of high speed steels.


2018 ◽  
Vol 70 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Hongjuan Yang ◽  
Lin Fu ◽  
Yanhua Liu ◽  
Weiji Qian ◽  
Bo Hu

Purpose This paper aims to investigate the delamination wear properties of a carbon strip in a carbon strip rubbing against a copper wire at the high-sliding speed (380 km/h) with or without electrical current. Design/methodology/approach The friction and wear properties of a carbon strip in a carbon strip rubbing against a copper wire are tested on the high-speed wear tester whose speed can reach up to 400 km/h. The test data have been collected by the high-speed data collector. The worn surfaces of the carbon strip are observed by the scanning electron microscope. Findings It was found that there was a significant increase of the delamination wear with the decrease of the normal load when the electric current is applied. The size of the flake-like peeling also increases with the decrease of normal load. The delamination wear extends gradually from the edge of the erosion pits to the surrounding area with the decrease of the normal load. However, the delamination wear never appears in the absence of electric current. It is proposed that the decreased normal load and the big electrical current are the major causes of the delamination wear of the carbon strip. Originality value The experimental test at high-sliding speed of 380 km/h was performed for the first time, and the major cause of the delamination was discovered in this paper.


Author(s):  
Shunichi Kubo ◽  
Hiroshi Tsuchiya

The metal-impregnated carbon fiber-reinforced carbon composite (C/C composite) is expected to be a candidate material for pantograph contact strips of high-speed electric railway vehicles, because its mechanical strength for flexure and impact is much higher than that of the conventional metal-impregnated carbon. The authors have investigated the wear properties of copper-titanium-alloy impregnated C/C composite sliding against a copper disk under an electric current and frequent arc discharges. The tested C/C composite was prepared by press molding and baking of laminated carbon fiber woven sheets. There exists anisotropy in the physical properties originated from the orientation of carbon fiber woven sheets lamination. The C/C composite was slid in two directions, in parallel with or perpendicular to the sheet layer. The test results show that the wear rate in sliding in the parallel direction exceeds that in the perpendicular direction, especially in the cases where the material is subjected to higher current density and more frequent arc discharges.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Crucible CPM Rex 54 HS is a cobalt-bearing high speed tool steel that is produced by the proprietary Crucible Particle Metallurgy (CPM) process. It combines the wear properties of the popular high vanadium M4 grade with the red hardness of the cobalt-bearing M35/Crucible CPM Rex 45 HS grades. Crucible CPM Rex 54 HS may be used as an upgrade for improved red hardness over M3 or M4 without giving up the abrasion resistance, or as an upgrade for improved wear resistance over M35 or Crucible CPM Rex 45 HS without giving up the red hardness. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on wear resistance as well as heat treating and surface treatment. Filing Code: TS-818. Producer or source: Crucible Industries LLC.


Sign in / Sign up

Export Citation Format

Share Document