Modelling and numerical simulations of vibrothermography for impact damage detection in composites structures

2012 ◽  
Vol 20 (4) ◽  
pp. 626-638 ◽  
Author(s):  
L. Pieczonka ◽  
F. Aymerich ◽  
G. Brozek ◽  
M. Szwedo ◽  
W. J. Staszewski ◽  
...  
Author(s):  
L J Pieczonka ◽  
W J Staszewski ◽  
F Aymerich ◽  
T Uhl ◽  
M Szwedo

2002 ◽  
Author(s):  
Hiroaki Tsutsui ◽  
Akio Kawamata ◽  
Junichi Kimoto ◽  
Tomio Sanda ◽  
Nobuo Takeda

2013 ◽  
Vol 569-570 ◽  
pp. 1132-1139 ◽  
Author(s):  
Thomas Siebel ◽  
Mihail Lilov

The sensitivity of the electromechanical impedance to structural damage under varying temperature is investigated in this paper. An approach based on maximizing cross-correlation coefficients is used to compensate temperature effects. The experiments are carried out on an air plane conform carbon fiber reinforced plastic (CFRP) panel (500mm x 500mm x 5mm) instrumented with 26 piezoelectric transducers of two different sizes. In a first step, the panel is stepwise subjected to temperatures between-50 °C and 100 °C. The influence of varying temperatures on the measured impedances and the capability of the temperature compensation approach are analyzed. Next, the sensitivity to a 200 J impact damage is analyzed and it is set in relation to the influence of a temperature change. It becomes apparent the impact of the transducer size and location on the quality of the damage detection. The results further indicate a significant influence of temperature on the measured spectra. However, applying the temperature compensation algorithm can reduce the temperature effect at the same time increasing the transducer sensitivity within its measuring area. The paper concludes with a discussion about the trade-off between the sensing area, where damage should be detected, and the temperature range, in which damage within this area can reliably be detected.


2012 ◽  
Vol 78 (790) ◽  
pp. 879-889
Author(s):  
Akihiro WADA ◽  
Shinya MOTOGI ◽  
Tomohiro YAMASAKI

2015 ◽  
Author(s):  
Gerges Dib ◽  
Ermias Koricho ◽  
Oleksii Karpenko ◽  
Mahmood Haq ◽  
Lalita Udpa ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3394
Author(s):  
Roman Růžek ◽  
Josef Křena ◽  
Radek Doubrava ◽  
Josef Tkadlec ◽  
Martin Kadlec ◽  
...  

The present paper documents and discusses research work associated with a newly designed passenger door structure demonstrator. The composite structure was manufactured from carbon-fiber-reinforced thermoplastic resin. A composite frame with a variable cross-section was designed, optimized, and fabricated using thermoforming technology. Both numerical simulations and experiments supported structural verification according to the damage tolerance philosophy; i.e., impact damage is presented. The Tsai-Wu and maximal stress criteria were used for damage analysis of the composite parts. Topological optimization of the metal hinges from the point of view of weight reduction was used. All expected parameters and proposed requirements of the mechanical properties were proved and completed. The door panel showed an expected numerically evaluated residual strength (ultimate structure load) as well as meeting airworthiness requirements. No impact damage propagation in the composite parts was observed during mechanical tests, even though visible impact damage was introduced into the structure. No significant difference between the numerical simulations and the experimentally measured total deformation was observed. Repeated deformation measurements during fatigue showed a nonlinear structure behavior. This can be attributed to the relaxation of thermoplastics.


2018 ◽  
Vol 18 (1) ◽  
pp. 318-333 ◽  
Author(s):  
Aggelos G Poulimenos ◽  
John S Sakellariou

Oftentimes, the complexity in manufacturing composite materials leads to corresponding structures which although they may have the same design specifications they are not identical. Thus, composite parts manufactured in the same production line present differences in their dynamics which combined with additional uncertainties due to different operating conditions may lead to the complete concealment of effects caused by small, incipient, damages making their detection highly challenging. This damage detection problem in nominally identical composite structures is pursued in this study through a novel data-based response-only methodology that is founded on the autoregressive with exogenous (ARX) excitation parametric representation of the transmittance function between vibration measurements at two different locations on the structure. This is a statistical time series methodology within which two schemes are formulated. In the first, a single-reference transmittance model representing the healthy structure is employed, while multiple transmittance models from a sample of available healthy structures are used in the second. The model residual signal constitutes for both schemes the damage detection characteristic quantity that is used in appropriate hypothesis testing procedures with the likelihood ratio test. The methodology is experimentally assessed via damage detection for a population of composite beams which are manufactured in the same production line representing the half of the tail of a twin-boom unmanned aerial vehicle. The damage detection results demonstrate the superiority of the multiple transmittance models based scheme that may effectively detect damages under significant manufacturing variability and varying boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document