Numerical simulation and simplified analytical model for the longitudinal joint bending stiffness of a tunnel considering axial force

2021 ◽  
Author(s):  
Qiang Yuan ◽  
Fayun Liang ◽  
Yanqi Fang
Author(s):  
Pezhman A. Hassanpour ◽  
Patricia M. Nieva ◽  
Amir Khajepour

In this paper, a novel sensing mechanism is introduced. This mechanism consists of a clamped-clamped beam and two parallel electrodes. An analytical model of the system, that takes into account the mechanical linear and nonlinear stiffnesses as well as the nonlinear electrostatic force, is developed. The time response of the system to a disturbance is derived while the applied voltage is increasing at a constant rate. It has been shown that the voltage, that destabilize the beam, can be used as a measure of the axial force in the beam. This technique can be used in the development of new type of sensors.


2020 ◽  
Vol 853 ◽  
pp. 177-181
Author(s):  
Zhi Yun Wang ◽  
Shou Ju Li

Concrete segments are widely used to support soil and water loadings in shield-excavated tunnels. Concrete segments burden simultaneously to the loadings of bending moments and axial forces. Based on plane deformation assumption of material mechanics, in which plane section before bending remains plane after bending, ultimate bending moment model is proposed to compute ultimate bearing capacity of concrete segments. Ultimate bending moments of concrete segments computed by analytical models agree well with numerical simulation results by FEM. The accuracy of proposed analytical computational model for ultimate bending moment of concrete segments is numerically verified. The analytical computational model and numerical simulation for a practical engineering case indicate that the ultimate bending moment of concrete segments increases with increase of axial force on concrete segment in the case of large eccentricity compressive state.


1992 ◽  
Vol 258 ◽  
Author(s):  
C.-D. Abel ◽  
G. H. Bauer

ABSTRACTGeneral features of the steady-state photocarrier grating technique applied to amorphous semiconductors are investigated by complete numerical simulation. The results are interpreted with an analytical model which delivers a closed-form expression for β(A,E) assuming dominance of one carrier type. The variation of the electric field E instead of the grating period A is suggested as an easier and more accurate tool for the experimental technique.


2015 ◽  
Vol 821-823 ◽  
pp. 628-631
Author(s):  
Luigi di Benedetto ◽  
Gian Domenico Licciardo ◽  
Salvatore Bellone ◽  
Roberta Nipoti

ForwardJD–VDcurves of 4H−SiC p−i−n diodes are analyzed by means of an analytical model in order to justify the presence of a crossing−point. The interlacing behaviour occurring in theJD–VDcurves of 4H−SiC diodes at different temperatures is predicted by a simple formula, which can be used for a first-order design of such devices. Numerical simulation of diodes designed with different epilayer thickness and carrier lifetime values have been used in order to analyze the crossing−point behaviour. Comparisons with experimental data confirm the analytic and simulated results.


2010 ◽  
Vol 651 ◽  
pp. 465-481 ◽  
Author(s):  
TAKASHI NOGUCHI ◽  
HIROSHI NIINO

Evolution of layers in an unbounded diffusively stratified two-component fluid and its dynamics are studied by means of a direct numerical simulation (DNS) and an analytical model. The numerical simulation shows that the layers grow by repeating mergings with the neighbouring layers. By analysing the results of the numerical simulation, the mechanism of the merging is examined in detail. Two modes of merging are found to exist: one is the layer vanishing mode and the other is the interface vanishing mode. The vanishings of layers and interfaces are caused by turbulent entrainment at the interfaces. Based on the analysis of the numerical model, a one-dimensional asymmetric entrainment model is proposed. In the model, each layer is assumed to interact with its neighbouring layers through simplified convective entrainment laws. The model is applied to two simple configurations of layers and is proved to reproduce the layer evolutions found in the DNS successfully.


Sign in / Sign up

Export Citation Format

Share Document