scholarly journals Minimal requirements for the vibration-based identification of the axial force, the bending stiffness and the flexural boundary conditions in cables

2021 ◽  
pp. 116326
Author(s):  
M. Geuzaine ◽  
F. Foti ◽  
V. Denoël
2011 ◽  
Vol 338 ◽  
pp. 467-472 ◽  
Author(s):  
Ji Duo Jin ◽  
Xiao Dong Yang ◽  
Yu Fei Zhang

The stability, natural characteristics and critical axial force of a supported beam are analyzed. The both ends of the beam are held by the pinned supports with rotational spring constraints. The eigenvalue problem of the beam with these boundary conditions is investigated firstly, and then, the stability of the beam is analyzed using the derived eigenfuntions. According to the analytical expression obtained, the effect of the spring constants on the critical values of the axial force is discussed.


Author(s):  
Julia Cossé ◽  
John Sader ◽  
Daegyoum Kim ◽  
Cecilia Huertas Cerdeira ◽  
Morteza Gharib

The fluttering flag instability has been thoroughly studied through experimental, computational and theoretical means. However, each of these studies only considers the boundary conditions where a flagpole or other tethering mechanism precedes the plate in the fluid flow. Under the inverse condition, where the so-called flag is fixed by its downstream edge in the fluid flow, three regions of behavior exist: straight, flapping, and bent back. This paper expands on these findings by closely examining the transition regions between straight and flapping and flapping and bent back. The onset mechanism of the instability and the terminating mechanism are shown to be dependent on different factors. The region of flapping occurs within a narrow range of non-dimensional bending stiffness, with the region boundaries depending on the aspect ratio and angle of attack of the plate.


SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 405-416 ◽  
Author(s):  
Wenjun Huang ◽  
Deli Gao ◽  
Fengwu Liu

Summary A new buckling equation in horizontal wells is derived on the basis of the general bending and twisting theory of rods. The boundary conditions of a long tubular string are divided into two categories: the sum of the virtual work of bending moment and shear force at the ends of tubular strings is equal to zero, and the sum of the virtual work of bending moment and shear force at the ends is not equal to zero. Buckling solutions under different boundary conditions are obtained by solving the new buckling model. For the boundary conditions of the first category, the buckling solutions are identical with previous results. For the boundary conditions of the second category, the buckling solutions are different from the results under the boundary conditions of the first category. The results indicate that buckling behaviors depend on both the axial force and the boundary conditions. Compared with previous results, buckling solutions of the new model provide a more comprehensive description of tubular-buckling behaviors.


Author(s):  
Chang-New Chen

The influence of axial force on the vibration of Euler-Bernoulli beam structures is analyzed by differential quadrature element method (DQEM) using extended differential quadrature (EDQ). The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


2014 ◽  
Vol 84 (12) ◽  
pp. 1691-1700 ◽  
Author(s):  
Benyamin Gholami Bazehhour ◽  
Seyed Mahmoud Mousavi ◽  
Anoushiravan Farshidianfar

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MATLAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


2013 ◽  
Vol 332 (4) ◽  
pp. 795-806 ◽  
Author(s):  
Suzhen Li ◽  
Edwin Reynders ◽  
Kristof Maes ◽  
Guido De Roeck

Author(s):  
W. D. Zhu ◽  
G. Y. Xu

The effects of bending stiffness and boundary conditions on the lateral vibration of the stationary and moving hoist cables are investigated. The role of the trial functions in the approximate methods is examined. The optimal stiffness and damping coefficient of the suspension of the car against its guide rails are identified for the moving cable.


2013 ◽  
Vol 351-352 ◽  
pp. 667-670
Author(s):  
Zhi Da Li ◽  
Di Wu

Starting from the basic theory, to deduce the balance equations of the rod under the vertical and horizontal loads. Concerning the boundary problem, to analyze of this most general conditions, that is, the elastic rod ends are fixed on the elastic supports, thus to summary the common simplified boundary conditions.


Author(s):  
A. R. Ohadi ◽  
H. Mehdigholi ◽  
E. Esmailzadeh

Dynamic and stability analysis of non-uniform Timoshenko beam under axial loads is carried out. In the first case of study, the axial force is assumed to be perpendicular to the shear force, while for the second case the axial force is tangent to the axis of the beam column. For each case, a pair of differential equations coupled in terms of the flexural displacement and the angle of rotation due to bending was obtained. The parameters of the frequency equation were determined for various boundary conditions. Several illustrative examples of uniform and non-uniform beams with different boundary conditions such as clamped supported, elastically supported, and free end mass have been presented. The stability analysis, for the variation of the natural frequencies of the uniform and non-uniform beams with the axial force, has also been investigated.


Sign in / Sign up

Export Citation Format

Share Document