Effects of environmental temperature on the mechanical properties of polyethylene fiber‐engineered cementitious composites

2022 ◽  
Author(s):  
Fangyuan Dong ◽  
Kequan Yu ◽  
Jiangtao Yu ◽  
Yichao Wang ◽  
Keke Liu
Author(s):  
Shuaiyu Wang ◽  
Hongxiu Du ◽  
Jingjing Lv ◽  
Jun Guo ◽  
Guoyang Yue ◽  
...  

Engineered cementitious composites (ECC) are a type of high-performance fiber reinforced cementitious composite. ECC has different applications in the construction field due to its inherent characteristics of high tensile strain. The main concern regarding ECC is its high cost. The content of cement is high contributing to its cost. In this research work, the cement in ECC is replaced with marble dust and its mechanical properties such as compressive strength and flexure strength have been assessed. For this purpose, both cubes and cylinders were tested at different test ages for finding the compressive strength development with time and observe the shape effect of specimens on the compressive strength of ECC mixes. Beam members were tested for finding the flexure strength of ECC mixes. Deflection gauge was also installed at the mid span on the bottom surface of the beams to find the maximum mid span deflection before failure. The compression test results of both cylinders and cubes revealed that using of marble dust has negative effect on the compressive strength of ECC. The flexure strength result showed that marble dust can be used up to some extent replacing cement will increase the flexure strength. The result of mid span deflection suggests that by incorporating marble dust in ECC, its ductility increases.


2011 ◽  
Vol 250-253 ◽  
pp. 374-378
Author(s):  
Ying Zi Yang ◽  
Yan Yao ◽  
Yu Zhu

Four-point bending test was employed to investigate the effects of gradation of sand on the mechanical properties of Engineered Cementitious Composites (ECC). The characteristics of ECC such as mid-span deflection, first cracking load, peak load and fracture toughness were obtained from the load-deflection curve. Effects of gradation of sand on fresh properties, compressive strength, flexural strength and drying shrinkage of ECC were also discussed in this paper. Test results shown that when the fineness modulus of sand in ECC was 1.0, the mid-span deflection and fracture toughness of ECC increased nearly 1.5 times and 2 times that of ECC with the sand fineness modulus of 2.97, respectively. With the sand getting finer, the more superplascitizer is needed and the crack width of ECC becomes smaller. The drying shrinkage of ECC with 2.97 and 1.0 fineness modulus of sand at 24 days was 8×10-4 and 15.6×10-4, respectively.


Sign in / Sign up

Export Citation Format

Share Document