Influence of supplementary cementitious materials, curing conditions and mixing ratios on fresh and mechanical properties of engineered cementitious composites – A review

2021 ◽  
Vol 309 ◽  
pp. 125038
Author(s):  
N. Shanmugasundaram ◽  
S. Praveenkumar
Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3327
Author(s):  
Erick Maldonado-Bandala ◽  
Noema Higueredo-Moctezuma ◽  
Demetrio Nieves-Mendoza ◽  
Citlalli Gaona-Tiburcio ◽  
Patricia Zambrano-Robledo ◽  
...  

The selection of materials for repairs of reinforced concrete structures is a serious concern. They are chosen for the mechanical capacity that the repair mortar achieves. However, several important characteristics have been left aside, such as the adhesion of the repair mortar with the concrete substrate, the electrical resistivity and—hugely important—the protection against corrosion that the repair material can provide to the reinforcing steel. The aim of this work was to study the corrosion behavior of AISI 1018 carbon steel (CS) in mortars manufactured with alkaline cements, engineered cementitious composites (ECC), and supplementary cementitious materials (SCM). Two types of ordinary Portland cement (OPC) 30R and 40R were used. The constituent materials for the mortars with ECC mixture mortars they use OPC 40R, class F fly ash (FA), silica fume (SF) and polypropylene (PP) fibers. The sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) were used as activating agents in alkali activated cements. The reinforced specimens were immersed in two different electrolytes, exposed to a 3.5 wt % of NaCl and Na2SO4 solutions, for 12 months and their electrochemical behavior was studied by half-cell potential (Ecorr) and linear polarization resistance (LPR) according to ASTM C876-15 and ASTM G59-97, respectively. The results obtained indicated that, the mortar they have the best performance and durability, is the conventional MCXF mortar, with OPC 30R and addition of 1% polypropylene PP fiber improves the behavior against the attack of chlorides and sulfates.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012004
Author(s):  
M R Md Zain ◽  
C L Oh ◽  
L S Wee

Abstract Engineered cementitious composites (ECC) mixtures demand a large cement content, which is detrimental to their sustainable development because mass cement production is hazardous to the environment and human health. Thus, this paper investigates the mechanical performance of eco engineered cementitious composites (ECC) under axial compressive loading and direct tensile strength tests. The eco ECC used in this investigation was comprised of cement, superplasticizer, fly ash (FA) or ground granulated blast furnace slag (GGBS), polypropylene (PP) fibre, water and recycled concrete fines (RCF). Two (2) eco ECC mixture series were designed and prepared. GGBS70 (70 percent GGBS + 30 percent cement), FA70 (70 percent Fly Ash + 30 percent cement), GGBS80 (80 percent GGBS + 20 percent cement), and FA80 (80 percent Fly Ash + 20 percent cement) are the four Cement-GGBS and Cement-Fly Ash combinations examined in this study. Also every combination had two different RCF percentages, R0.2 (0.2 percent RCF) and R0.4 (0.4 percent RCF). The main objective of this research is to determine the optimum mix design for eco ECC that contains supplementary Cementitious Materials (SCMs) such as GGBS or FA. Additionally, recycled concrete fines (RCF) were used as a substitute for sand. The influence of different cement replacement materials and RCF content on compressive and tensile strength was experimentally investigated. The inclusion of GGBS as a partial replacement of cement in the eco concrete mixture results in greater compressive strength than Fly Ash (FA). The test results revealed that increasing the RCF content in the ECC mixture resulted in higher compressive and tensile strength. When the sand to binder ratio was adjusted between 0.2 and 0.4, the compressive and tensile strength of the ECC mixture increased.


2021 ◽  
Vol 2021 (2) ◽  
pp. 52-57
Author(s):  
Uliana Marushchak ◽  
◽  
Myroslav Sanytsky ◽  
Nazar Sydor ◽  
Ihor Margal ◽  
...  

The development of high-performance materials, which are characterized by high compressive and flexural strength, durability and performance properties, is an urgent problem of modern construction. Engineered cementitious composites are one such material. Improving of properties of composites is achieved by partial replacement of cement with supplementary cementitious materials. The ratio of binder and filler components and superplasticizer consumption were selected. The optimal ratio of cement:fly ash:sand is 1:1:1 and the dosage of polycarboxylate superplasticizer is 0.75% by weight of the binder. The reduction of the negative impact of the increased amount of fly ash, which is characterized by low reactivity, is provided by the introduction of metakaolin and alkaline hardening activator. Alkaline activated cement system is characterized by increasing of the early strength in 1.5 times comparison with equivalent mixture without alkaline activator. Strength of alkaline activated cementing matrix after 28 days is 66.1 MPa and specific strength Rc2/Rc28 is 0.61.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jin Wook Bang ◽  
G. Ganesh Prabhu ◽  
Yong Il Jang ◽  
Yun Yong Kim

The purpose of this study is to develop ecoefficient engineered cementitious composites (ECC) using supplementary cementitious materials (SCMs), including fly ash (FA) and blast furnace slag (SL) as a binder material. The cement content of the ECC mixtures was replaced by FA and SL with a replacement rate of 25%. In addition, the fine aggregate of the ECC was replaced by bottom ash aggregate (BA) with a substitution rate of 10%, 20%, and 30%. The influences of ecofriendly aggregates on fresh concrete properties and on mechanical properties were experimentally investigated. The test results revealed that the substitution of SCMs has an advantageous effect on fresh concrete’s properties; however, the increased water absorption and the irregular shape of the BA can potentially affect the fresh concrete’s properties. The substitution of FA and SL in ECC led to an increase in frictional bond at the interface between PVA fibers and matrix, improved the fiber dispersion, and showed a tensile strain capacity ranging from 3.3% to 3.5%. It is suggested that the combination of SCMs (12.5% FA and 12.5% SL) and the BA aggregate with the substitution rate of 10% can be effectively used in ECC preparation.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2950
Author(s):  
Hongwei Song ◽  
Xinle Li

The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.


Author(s):  
Shuaiyu Wang ◽  
Hongxiu Du ◽  
Jingjing Lv ◽  
Jun Guo ◽  
Guoyang Yue ◽  
...  

2021 ◽  
Vol 1036 ◽  
pp. 240-246
Author(s):  
Jin Tang ◽  
Su Hua Ma ◽  
Wei Feng Li ◽  
Hui Yang ◽  
Xiao Dong Shen

The use of calcined clay and limestone as supplementary cementitious materials, can have a certain influence on the hydration of Portland cement. This paper reviewed the influence of limestone and calcined clay and the mixture of limestone and calcined clay on the hydration of cement. Both limestone and calcined clay accelerate the hydration reaction in the early hydration age and enhance the properties of cement. Limestone reacts with C3A to form carboaluminate, which indirectly stabilized the presence of ettringite, while calcined clay consumed portlandite to form C-(A)-S-H gel, additional hydration products promote the densification of pore structure and increase the mechanical properties. The synergistic effect of calcined clay and limestone stabilize the existence of ettringite and stimulate the further formation of carboaluminate, as well as the C-(A)-S-H gel, contributed to a dense microstructure.


Engineered cementitious composites (ECC) are a type of high-performance fiber reinforced cementitious composite. ECC has different applications in the construction field due to its inherent characteristics of high tensile strain. The main concern regarding ECC is its high cost. The content of cement is high contributing to its cost. In this research work, the cement in ECC is replaced with marble dust and its mechanical properties such as compressive strength and flexure strength have been assessed. For this purpose, both cubes and cylinders were tested at different test ages for finding the compressive strength development with time and observe the shape effect of specimens on the compressive strength of ECC mixes. Beam members were tested for finding the flexure strength of ECC mixes. Deflection gauge was also installed at the mid span on the bottom surface of the beams to find the maximum mid span deflection before failure. The compression test results of both cylinders and cubes revealed that using of marble dust has negative effect on the compressive strength of ECC. The flexure strength result showed that marble dust can be used up to some extent replacing cement will increase the flexure strength. The result of mid span deflection suggests that by incorporating marble dust in ECC, its ductility increases.


Sign in / Sign up

Export Citation Format

Share Document