Systems Chemistry Looking Forward

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Deanne Nolan ◽  
Greta Heydenrych
Keyword(s):  
2019 ◽  
Vol 3 (5) ◽  
pp. 435-443 ◽  
Author(s):  
Addy Pross

Despite the considerable advances in molecular biology over the past several decades, the nature of the physical–chemical process by which inanimate matter become transformed into simplest life remains elusive. In this review, we describe recent advances in a relatively new area of chemistry, systems chemistry, which attempts to uncover the physical–chemical principles underlying that remarkable transformation. A significant development has been the discovery that within the space of chemical potentiality there exists a largely unexplored kinetic domain which could be termed dynamic kinetic chemistry. Our analysis suggests that all biological systems and associated sub-systems belong to this distinct domain, thereby facilitating the placement of biological systems within a coherent physical/chemical framework. That discovery offers new insights into the origin of life process, as well as opening the door toward the preparation of active materials able to self-heal, adapt to environmental changes, even communicate, mimicking what transpires routinely in the biological world. The road to simplest proto-life appears to be opening up.


2017 ◽  
Vol 53 (75) ◽  
pp. 10410-10413 ◽  
Author(s):  
Arjen Cnossen ◽  
Cécile Roche ◽  
Harry L. Anderson

A hexapyridyl template can be used to indirectly up-regulate the synthesis of a linear porphyrin dodecamer, by suppressing polymerization.


Life ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 49 ◽  
Author(s):  
Augustin Lopez ◽  
Michele Fiore

Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.


2019 ◽  
Author(s):  
Jie Deng ◽  
Andreas Walther

We introduce pathway complexity on a multicomponent systems level in chemically fueled transient DNA polymerization system. The systems are based on a monomeric species pool that is fueled by ATP and orchestrated by an enzymatic reaction network (ERN) of ATP-powered ligation and concurrent cleavage. Such systems display autonomous evolution over multiple structural dynamic steady states from monomers to dimers, oligomer of dimers to ultimately randomized polymer structure before being ultimately degraded back to monomers once the fuel is consumed. The enabling key principle is to design monomer species having kinetically selected molecular recognition with respect to the structure-forming step (ATP-powered ligation) by encoding different sticky-end overhangs into the ligation area. However, all formed structures are equally degraded, and the orthogonal molecular recognition of the different starting species are harmonized during the constantly occurring restriction process, leading in consequence to a reconfiguration of the driven dynamic nanostructures on a higher hierarchical level. This non-equilibrium systems chemistry approach to pathway complexity provides new conceptual insights in fuel-driven automatons and autonomous materials design.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Govind Menon ◽  
J. Krishnan

AbstractSpatial organisation through localisation/compartmentalisation of species is a ubiquitous but poorly understood feature of cellular biomolecular networks. Current technologies in systems and synthetic biology (spatial proteomics, imaging, synthetic compartmentalisation) necessitate a systematic approach to elucidating the interplay of networks and spatial organisation. We develop a systems framework towards this end and focus on the effect of spatial localisation of network components revealing its multiple facets: (i) As a key distinct regulator of network behaviour, and an enabler of new network capabilities (ii) As a potent new regulator of pattern formation and self-organisation (iii) As an often hidden factor impacting inference of temporal networks from data (iv) As an engineering tool for rewiring networks and network/circuit design. These insights, transparently arising from the most basic considerations of networks and spatial organisation, have broad relevance in natural and engineered biology and in related areas such as cell-free systems, systems chemistry and bionanotechnology.


2007 ◽  
Vol 119 (46) ◽  
pp. 9014-9017 ◽  
Author(s):  
Peter T. Corbett ◽  
Jeremy K. M. Sanders ◽  
Sijbren Otto

2011 ◽  
Vol 47 (3) ◽  
pp. 847-858 ◽  
Author(s):  
Rosemary A. R. Hunt ◽  
Sijbren Otto

Sign in / Sign up

Export Citation Format

Share Document