Optimal application of fluid viscous dampers in tall buildings incorporating integrated damping systems

Author(s):  
Miguel Martinez‐Paneda ◽  
Ahmed Y. Elghazouli
2016 ◽  
Vol 10 (12) ◽  
pp. 245
Author(s):  
Solmaz Yaghobzadeh

Explained ways to strengthen structures against lateral dynamic loads can be divided into two broad categories. The first part is the structural systems for controlling seismic displacement and second part is the use of applying systems of control forces. Response mechanism of structures using control systems are improved and greatly reduce the risks of damage caused by earthquakes.Today the use of these control systems in buildings have been increased and it’s important to reduce vibration of structures is felt more than ever. As well as to improve the dynamic behavior of nearby buildings, control systems can be installed between adjacent buildings as activated, semi-active and inactivated systems. The main purpose of this study is the use of control systems in two similar adjacent buildings to reduce the entire system response which will be the analytical study of the impact of viscous dampers to control system performance.In order to analysis of modeling to improve the dynamic behavior of different adjacent buildings connected with dampers, two models of the original sample will be examined in this article. All examples are different from each other and to elicit response analysis and time history software SAP 2000was used. According to the results the effect of fluid viscous dampers for tall buildings compared shorter building, is less. Also, these dampers for adjacent buildings with different heights than buildings with same height are more effective.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Hytham Elwardany ◽  
Robert Jankowski ◽  
Ayman Seleemah

AbstractSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and nonlinear fluid viscous dampers to mitigate the mutual pounding between a series of structures is investigated. Nonlinear finite-element analysis of a series of adjacent steel buildings equipped with damping devices was conducted. Contact surfaces with both contactor and target were used to model the mutual pounding. The results indicate that the use of linear or nonlinear dampers leads to the significant reduction in the response of adjacent buildings in series. Moreover, the substantial improvement of the performance of buildings has been observed for almost all stories. From the design point of view, it is concluded that dampers implemented in adjacent buildings should be designed to resist maximum force of 6.20 or 1.90 times the design independent force in the case of using linear or nonlinear fluid viscous dampers, respectively. Also, designers should pay attention to the design of the structural elements surrounding dampers, because considerable forces due to pounding may occur in the dampers at the maximum displaced position of the structure.


Author(s):  
Ian Ashcroft ◽  
Melissa Burton ◽  
David Farnsworth

<p>The tall building world is seeing a trend pushing building heights and slenderness ratios to levels previously unseen. The design of these buildings for both strength and serviceability is typically governed by the dynamic response of the building to wind. Comfort of building occupants during relatively low return period wind events is a key challenge, and engineers are increasingly turning to damping technologies to limit building accelerations rather than adding stiffness or mass. Large tuned mass dampers (TMDs) are a commonly used solution.</p><p>This paper suggests that integrating viscous dampers within a tall building’s structure can deliver a cost- effective alternative to TMDs, delivering high performing buildings with additional benefits in terms of robustness and space efficiency.</p><p>Two case studies are presented. Firstly, measured data from a tower in New York with viscous dampers integrated into the structure is provided, comparing design stage predictions to real-life performance. Furthermore, a case study for a super-slender tower is described, demonstrating the potential for enhanced performance and significant cost and space savings using integrated damping.</p>


Sign in / Sign up

Export Citation Format

Share Document