Effects of cell cycle phases on the induction of dental pulp stem cells toward dopaminergic‐like cells

Author(s):  
Nareshwaran Gnanasegaran ◽  
Vijayendran Govindasamy ◽  
Premasangery Kathirvaloo ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim
2021 ◽  
Author(s):  
Haiyun Luo ◽  
Wenjing Liu ◽  
Yanli Zhang ◽  
Xiao Jiang ◽  
Shiqing Wu ◽  
...  

Abstract Background: Dental pulp stem cells (DPSCs) exhibited self-renewal, pluripotency capacity and served as promising cells source in endodontic regeneration and tissue engineering. Meanwhile, the regenerative capacity of DPSCs is limited and reduced in long lifespan. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs. The methyltransferases complex and demethylases mediated m6A methylation and cooperated to impact various biological processes associated with stem cell fate determination. However, the biological effect of m6A methylation in DPSCs remained unclear. Methods: Cell surface markers and differentiation potential of primary DPSCs were identified and m6A immunoprecipitation with deep sequencing (m6A RIP-seq) was used to uncover characteristics of m6A modifications in DPSCs transcriptome. Expression level of m6A-related genes were evaluated in immature/mature pulp tissues and cells. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence and apoptosis were further analyzed by β-galactosidase, TUNEL staining and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq was used to functionally enrich overlapped genes and screen target of METTL3. Cell cycle distributions were assayed by flow cytometry and m6A RIP-qPCR was used to confirm METTL3 mediated m6A methylation in DPSCs. Results: Here, m6A peaks distribution, binding area and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relative high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. Furthermore, Conjoint analysis of m6A RIP and RNA-sequencing showed differentially expressed genes affected by METTL3 depletion was mainly enriched in cell cycle, mitosis and alteration of METTL3 expression resulted in cell cycle arrest which indicated METTL3 make essential effect in cell cycle control. To further investigate underlying mechanisms, we explored proteins interaction network of differentially expressed genes and Polo-like Kinase 1 (PLK1), a critical cycle modulator was identified as target of METTL3-mediated m6A methylation in DPSCs. Conclusions: These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and serve new insight in stem cells based tissue engineering.


2010 ◽  
Vol 19 (12) ◽  
pp. 1855-1862 ◽  
Author(s):  
Darina Muthna ◽  
Tomas Soukup ◽  
Jirina Vavrova ◽  
Jaroslav Mokry ◽  
Jana Cmielova ◽  
...  

2019 ◽  
Vol 41 (6-7) ◽  
pp. 873-887 ◽  
Author(s):  
Ali Niapour ◽  
Hatef Ghasemi Hamidabadi ◽  
Nazila Niapour ◽  
Perham Mohammadi ◽  
Marzieh Sharifi Pasandi ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0229996 ◽  
Author(s):  
Ai Orimoto ◽  
Seiko Kyakumoto ◽  
Takahiro Eitsuka ◽  
Kiyotaka Nakagawa ◽  
Tohru Kiyono ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Daehwan Kim ◽  
Hyewon Kim ◽  
Kichul Kim ◽  
Sangho Roh

Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class and is known to have many effects including cell proliferation enhancement and antioxidant property. However, no study has revealed its defensive effects against oxidative toxicity in human dental pulp stem cells (hDPSCs). In this study, we investigated the effects of IAA on hydrogen peroxide- (H2O2-) induced oxidative toxicity in hDPSCs. H2O2-induced cytotoxicity was attenuated after IAA treatment. Cell cycle analysis using FACS showed that the damaged cell cycle and increased number of apoptotic cells by H2O2 treatment were recovered after the treatment of IAA. The H2O2-mediated increased expression of the proapoptotic genes, BAX and p53, was attenuated by IAA treatment, while IAA treatment increased antiapoptotic genes, BCL-2 and ATF5 expression. The increases of cleaved caspase-3 and ROS by H2O2 were also decreased after treatment of IAA. To further investigate the mechanism of IAA, Nrf2-related antioxidant pathway was examined and the results showed that the level of Nrf2 and HO-1 expressions, stimulated by H2O2, decreased after treatment of IAA. Moreover, IAA treatment protected hDPSCs against H2O2-induced oxidative stress via increased expression of Nrf2 and HO-1, mediated by the AKT pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyun Luo ◽  
Wenjing Liu ◽  
Yanli Zhang ◽  
Yeqing Yang ◽  
Xiao Jiang ◽  
...  

Abstract Background Dental pulp stem cells (DPSCs) are a promising cell source in endodontic regeneration and tissue engineering with limited self-renewal and pluripotency capacity. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs associated with stem cell fate determination. In this study, we aim to explore the biological effect of m6A methylation in DPSCs. Methods m6A immunoprecipitation with deep sequencing (m6A RIP-seq) demonstrated the features of m6A modifications in DPSC transcriptome. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence, and apoptosis were analyzed by β-galactosidase, TUNEL staining, and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq functionally enriched overlapped genes and screened target of METTL3. Cell cycle distributions were assayed by flow cytometry, and m6A RIP-qPCR was used to confirm METTL3-mediated m6A methylation. Results Here, m6A peak distribution, binding area, and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relatively high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. A conjoint analysis of m6A RIP and RNA sequencing showed METTL3 depletion associated with cell cycle, mitosis, and alteration of METTL3 resulted in cell cycle arrest. Furthermore, the protein interaction network of differentially expressed genes identified Polo-like kinase 1 (PLK1), a critical cycle modulator, as the target of METTL3-mediated m6A methylation in DPSCs. Conclusions These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and served new insight into stem cell-based tissue engineering.


2017 ◽  
Vol 14 (7) ◽  
Author(s):  
Junjun Liu ◽  
Zhi Liu ◽  
Chunyan Wang ◽  
Fang Yu ◽  
Wenping Cai ◽  
...  

Author(s):  
Alessandra Pisciotta ◽  
Giulia Bertani ◽  
Laura Bertoni ◽  
Rosanna Di Tinco ◽  
Sara De Biasi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document