Surfactin induces ER stress‐mediated apoptosis via IRE1‐ASK1‐JNK signaling in human osteosarcoma

2021 ◽  
Author(s):  
Guo‐Shou Wang ◽  
Ji‐Ying Chen ◽  
Wei‐Cheng Chen ◽  
I‐Chin Wei ◽  
Szu‐Wei Lin ◽  
...  
2013 ◽  
Vol 25 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Qing-you Zheng ◽  
Ping-ping Li ◽  
Feng-suo Jin ◽  
Chen Yao ◽  
Guo-hui Zhang ◽  
...  

Author(s):  
Shubin Wang ◽  
Zongguang Li ◽  
Wei Liu ◽  
Guojun Wei ◽  
Naichun Yu ◽  
...  

Neohesperidin has anti-oxidative and anti-inflammatory properties and exerts extensive therapeutic effects on various cancers. In this study, the osteosarcoma cell lines were exposed to different concentrations of neohesperidin. Cell proliferation and viability were assessed by CCK-8 and colony-formation assays. The role of neohesperidin in cell cycle progression and apoptosis were analyzed by flow cytometry and western blotting. To identify autophagosomes and autolysosomes, we used a tandem GFP-mRFP-LC3B lentiviral construct. In addition, autophagy was evaluated by examining autophagosome formation using transmission electron microscopy. Intracellular reactive oxygen species (ROS) production was detected by fluorescence microscopy and flow cytometry. Subsequently, the activation of the ROS/JNK signaling pathway was investigated. Neohesperidin could inhibit proliferation and induce apoptosis in SJSA and HOS cells. The formation of autophagosomes indicated that autophagy occurred in neohesperidin-treated cells and the apoptotic effect of neohesperidin was significantly increased after the use of autophagy inhibitors. Subsequently, we found that neohesperidin-induced apoptosis and autophagy were related to the increase in ROS generation and were significantly inhibited by GSH. Moreover, neohesperidin induced activation of the c-Jun N-terminal kinase (JNK) signaling pathway and inhibition of JNK with SP600125 attenuated neohesperidin-induced apoptosis and autophagy simultaneously. Our data indicated that neohesperidin caused G2/M phase arrest and induced apoptosis and autophagy by activating the ROS/JNK pathway in human osteosarcoma cells, suggesting that neohesperidin is a potential drug candidate for the treatment of osteosarcomas.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nicolas Pallet ◽  
Eric Thervet ◽  
Dany Anglicheau

Tubular epithelial cells play a central role in the pathogenesis of chronic nephropathies. Previous toxicogenomic studies have demonstrated that cyclosporine- (CsA-) induced epithelial phenotypic changes (EPCs) are reminiscent of an incomplete epithelial to mesenchymal transition (EMT) in a TGF-β-independent manner. Furthermore, we identified endoplasmic reticulum (ER) stress as a potential mechanism that may participate in the modulation of tubular cell plasticity during CsA exposure. Because c-jun-N-terminal kinase (JNK), which is activated during ER stress, is implicated in kidney fibrogenesis, we undertook the current study to identify the role of JNK signaling in EPCs induced by CsA. In primary cultures of human renal epithelial cells, CsA activates JNK signaling, and the treatment with a JNK inhibitor reduces the occurrence of cell shape changes, E-cadherin downregulation, cell migration, and Snail-1 expression. Our results suggest that CsA activates JNK signaling, which, in turn, may participate in the morphological alterations through the regulation of Snail-1 expression.


2019 ◽  
Vol 26 (1) ◽  
pp. 30-39 ◽  
Author(s):  
JongYeob Choi ◽  
MinWha Jo ◽  
EunYoung Lee ◽  
Dong-Yun Lee ◽  
DooSeok Choi

ABSTRACT Dienogest, a specific progesterone receptor agonist, is used in the treatment of endometriosis. However, it is still unclear as to the mechanisms of therapeutic effects on endometriosis. Our recent study showed that endometriosis may be the result of aberrant endoplasmic reticulum (ER) stress induction due to progesterone resistance. This finding suggests that the regulation of ER stress induction may play a key role in treatment of endometriosis. Therefore, the anti-endometriotic effects of dienogest may be mediated by regulation of ER stress. To test this hypothesis, we elucidate whether dienogest affects endometriotic stromal cell apoptosis, proliferation and invasiveness by modulating ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) expression. Specifically, PRKR-like ER kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4), inositol-requiring kinase 1 (IRE1)/TNF receptor-associated factor 2 (TRAF2)/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) signaling, and downstream CHOP were evaluated to determine the involved ER stress-mediated regulation mechanism of CHOP expression. Our results show that progesterone treatment did not have any significant effects on ER stress, apoptosis, proliferation, and invasion in estrogen-treated endometriotic cyst stromal cells (ECSCs). However, dienogest treatment upregulated the induction of ER stress. It also led to increased apoptosis, and decreased proliferation and invasiveness. These dienogest-induced changes in apoptosis, proliferation and invasiveness were reversed by the ER stress inhibitor salubrinal. Furthermore, dienogest-induced ER stress increased CHOP expression through activation of both PERK/elf2α/ATF4 and IRE1/TRAF2/ASK1/JNK signaling. This upregulation was blocked by transfection with PERK and IRE1 siRNA, which decreased apoptosis and increased the proliferation and invasiveness of dienogest-treated ECSCs. Taken together, our findings indicate that dienogest enhances ER stress induction in endometriotic stromal cells, which affects apoptosis, proliferation and invasiveness via CHOP upregulation.


Sign in / Sign up

Export Citation Format

Share Document