Utilization of UV‐A and UV‐C radiation in advanced oxidation processes with the intention of removing color and organic matter from the gross leachate of a stabilized sanitary landfill

2020 ◽  
Vol 29 (3) ◽  
pp. 43-49
Author(s):  
Samara Teixeira Pereira ◽  
Elisângela Maria Rodrigues Rocha ◽  
Elson Santos da Silva ◽  
Giulia Beatriz Mota da Silva ◽  
Maria Luisa Palitot Remigio Alves
2004 ◽  
Vol 4 (4) ◽  
pp. 113-119 ◽  
Author(s):  
C.A. Murray ◽  
S.A. Parsons

Advanced oxidation processes have been reported to have the potential to remove natural organic matter from source waters. Of these Fenton's reagent, photo-Fenton's reagent and titanium dioxide photocatalysis are the three most promising processes. Compared to conventional coagulation/flocculation processes they have higher removal efficiencies in terms of both dissolved organic carbon and UV254 absorbance. Under optimum reaction conditions all three remove over 80% dissolved organic carbon and 0% UV254 absorbance. In addition the enhanced removal of natural organic matter leads to a corresponding reduction in the formation of disinfection by-products following chlorination of the treated water. Advanced oxidation processes give enhanced removal of organic species ranging from low to high molecular weight while coagulation/flocculation is inefficient at removing low molecular weight species. One additional benefit is all three processes produce less residuals compared to conventional coagulation, which is advantageous as the disposal of such residuals normally contributes a large proportion of the costs at water treatment works.


2020 ◽  
Vol 42 ◽  
pp. e9
Author(s):  
Alex Leandro Andrade de Lucena ◽  
Daniella Carla Napoleão ◽  
Hélder Vinícius Carneiro da Silva ◽  
Rayany Magali da Rocha Santana ◽  
Beatriz Galdino Ribeiro ◽  
...  

The existence of pharmaceuticals in nature is a growing environmental problem, turning necessary the use of efficient treatments for the degradation of these substances, as the advanced oxidation processes (AOPs). In this work the AOPs UV/H2O2 and photo-Fenton were applied to degrade the pharmaceuticals lamivudine and zidovudine in an aqueous solution using a bench reactor, composed of three UV-C lamps. It was verified that the UV/H2O2 process presented a degradation of 97.33 ± 0.14% for lamivudine and 93.90 ± 0.33% for zidovudine, after 180 min of treatment and for an initial concentratin of each pharmaceutical of  5 mg.L-1 and [H2O2] of 600 mg.L-1.  A methodology by artificial neural networks (ANNs) was used to model the photocatalytic process, with the MLP 7-23-2 ANN representing it well, and determining the relative importance (%) of each of the input variables for the pharmaceutical’s degradation process. Kinetic studies for the pharmaceutical degradation and the conversion of organic matter showed good adjustments to the pseudo first-order models with R2 raging from 0.9705 to 0.9980. Toxicity assays for the before treatment solution indicated that the seeds Lactuca sativa and Portulaca grandiflora showed growth inhibition whereas the post-treatment solution inhibited only the growth of Lactuca sativa.


2018 ◽  
Vol 630 ◽  
pp. 1216-1225 ◽  
Author(s):  
J. Rodríguez-Chueca ◽  
E. Laski ◽  
C. García-Cañibano ◽  
M.J. Martín de Vidales ◽  
Á. Encinas ◽  
...  

2019 ◽  
Vol 372 ◽  
pp. 94-102 ◽  
Author(s):  
J. Rodríguez-Chueca ◽  
C. García-Cañibano ◽  
R.-J. Lepistö ◽  
Á. Encinas ◽  
J. Pellinen ◽  
...  

Author(s):  
Mohamad Anuar Kamaruddin

Sanitary landfilling is the most acceptable method to eliminate solid urban wastes. However, it is known that sanitary landfill generates large amount of heavily polluted leachate. High concentrations of recalcitrant organics make its degradation more complicated and high concentration of organic material can be toxic and reduce bioremediation process. Landfill leachate treatment by advanced oxidation processes (AOPs) have been intensively studied with high successful rate for removing refractory pollutants (biological degradation) from leachate. Fenton reaction which is one basic AOPs is based on the addition of hydrogen peroxide to the leachate in the presence of ferrous salt as a catalyst. Because of that, many improvement and development of new Fenton-based methods have been reported in the literature. This review discussed the application of Fenton and related processes in terms of wide application in landfill leachate treatment. The effects of various operating parameters and their optimum ranges for organics contaminant removed were also discussed.


Sign in / Sign up

Export Citation Format

Share Document